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Abstract—The ESPRESSO testing framework for ANDROID has
gained popularity among developers as it allows to write concise
and reliable UI tests. State-of-the-art tools for automatically
testing ANDROID apps, however, tend to produce crash reports
rather than human-readable tests, and even if they produce
tests these (1) rarely use the ESPRESSO format; (2) are often
unreliable due to the volatile nature of widget identifiers; and
(3) usually contain no test assertions to serve as regression oracles.
While the lack of ESPRESSO support of test generation tools has
been addressed by reverse engineering ESPRESSO tests, the other
problems remain even with this workaround. In this paper, we
therefore introduce a novel ESPRESSO-based representation that
allows test generators to generate ESPRESSO test cases directly
that (1) can reliably identify widgets using clear and concise
ESPRESSO selectors, and (2) can check test executions using
ESPRESSO assertions. Experiments on 1,035 ANDROID apps
demonstrate that the proposed approach generates ESPRESSO
tests that are significantly more reliable than reverse engineered
tests, and the ESPRESSO assertions of the generated tests are
effective at detecting faults in ANDROID apps.

Index Terms—ANDROID test generation, ESPRESSO test cases,
AndroZoo benchmark, Mutation analysis

I. INTRODUCTION

ESPRESSO [1] is a testing framework that helps developers
write concise, reliable, and human-readable ANDROID UI
tests, and it is the only UI testing framework with substan-
tial adoption amongst app developers [2]. Its popularity is
supported by its inclusion in the ANDROID Software Devel-
opment Kit (SDK), its ability to mitigate flakiness, and the
simplicity of the creation and maintenance of tests. Despite
this popularity, evidence suggests that ANDROID developers
tend to neglect creating automated tests [2], [3].

To aid developers, various automated test generation tools
have been introduced [4]–[8]. There are, however, some com-
mon limitations to these tools: First, many ANDROID testing
tools do not produce test cases at all but instead report crashes.
While this is certainly valuable information, it does not support
the aim of building strong regression test suites. Second, even
when the tools produce tests, these tests are often (1) unreliable
due to the volatile nature of widget identifiers in ANDROID,
leading to errors during re-execution; (2) not easy to read or
maintain as they rarely use the elegant ESPRESSO framework;
and (3) do not contain test assertions, which are a prerequisite
for making tests useful during regression testing.

The ESPRESSO framework’s popularity makes it a good
candidate as an output format for test generation tools, ad-
dressing these concerns. Since most existing test generation
tools do not support ESPRESSO, a workaround that has been
proposed is to reverse engineer their output, translating it
into the ESPRESSO format [9]. However, this translation-
based approach is inherently challenged by the absence of
unique properties that would allow to unambiguously identify
UI widgets. This problem is exacerbated as many test gen-
eration tools use ANDROID’s Accessibility Service API [10]
for collecting screen state information, which may result in
inconsistencies [9] such as inaccurate class names of views,
missing content description properties, or incorrect text casing.
As a result tests may erroneously fail upon re-execution.

In this work, we propose a novel technique to overcome
these difficulties: Rather than relying on ANDROID’s Ac-
cessibility Service, we introduce a novel representation of
test cases for automated test generators, which directly uses
the ESPRESSO framework to interact with an app under test
(AUT) by defining ESPRESSO selectors that concisely locate
ANDROID widgets. This provides several advantages address-
ing the above listed concerns: First, using the ESPRESSO
format matches what developers want. Second, this approach
increases the reliability of the generated tests. Third, unlike
previous test generation approaches for ANDROID this allows
adding test assertions using the ESPRESSO View Assertion
mechanism. We implemented this approach in ESPRESSO-
MAKER, an extension of the search-based test generation
framework MATE [11].

In detail, the contributions of this article are:
• We introduce an approach for generating ESPRESSO tests

using ESPRESSO selectors.
• We introduce an approach for generating regression as-

sertions using the ESPRESSO assertions mechanism.
• We provide an open source implementation of the pro-

posed approach in ESPRESSOMAKER, an extension to the
MATE tool for ANDROID test generation.

• We empirically study ESPRESSOMAKER on 1,035 AN-
DROID apps with respect to reliability and fault detection.

The experiments demonstrate that the proposed approach
increases reliability: 74.33% of the tests generated using
ESPRESSOMAKER can be executed reliably, whereas the tra-
ditional translation-based approach leads to only 24.11% re-



(a) ANDROID UI example. The user swipes up to reveal the rest of
the list, and then clicks the “Next” button to reveal the second page
in the form.

(b) XML example for “Pepperoni” row in Figure 1a.

Fig. 1: ANDROID UI example and associated XML code.

executable tests. The study also confirms that the ESPRESSO
assertions generated by ESPRESSOMAKER are statistically
better at detecting faults than tests without assertions.

ESPRESSOMAKER’s implementation is open-source and can
be found online [12], [13]. Additionally, we provide a publicly
available replication package [14] containing the source code
of ESPRESSOMAKER, the scripts used to run the experiments,
and the raw data collected during the empirical study.

II. BACKGROUND

A. The ANDROID User Interface

ANDROID app development involves defining separate user
interfaces through Activities. Each Activity represents a single
window for user interaction, composed of a graphical interface
and relevant code to respond to both user-triggered events
(e.g., button clicks, text field input, etc.) and system-level
events (e.g., low battery, network connectivity issues, etc.)

An Activity’s UI can be defined using either code or XML
files (as shown in Figure 1b). In both cases, developers must
provide a View Hierarchy to be interpreted by the ANDROID
operating system for rendering the screen. A View Hierarchy
consists of a tree-like structure with a root view at the top and
child views branching off. The View class is the basic building
block of the ANDROID UI, taking up a rectangular space on
the screen and handling both drawing and event handling. It
serves as the foundation for interactive UI elements such as
buttons and text fields (informally known as widgets). Users
interact with the mobile app through actions on the visible

Fig. 2: Example of an ESPRESSO test. This test builds an
ESPRESSO View Matcher for selecting a view that has, at the
same time, a resource identifier “R.id.button” and a parent with
resource identifier “R.id.layout”. It then clicks on the selected
view and asserts that its text is “Clicked”.

views. For example, clicking the “Add item” ImageButton (i.e.,
the ⊞ button) in the rows of Figure 1a. Lastly, internal nodes
in the View Hierarchy are View Groups, which are views that
can contain other views. An example of a UI and part of its
hierarchy is shown in Figure 1.

B. Testing ANDROID Apps

JUNIT [15] is a widely used framework for JAVA unit
testing. In ANDROID projects, pure JUNIT test cases can only
be used to exercise classes that have no interactions with the
ANDROID framework. Testing the GUI components of an app,
such as activities and views, requires instrumented tests, which
run on ANDROID devices, either physical or emulated [16],
allowing them to take advantage of the ANDROID framework
APIs. These tests are initialized in a special environment
that gives them access to an instance of the Instrumentation
class [17], which allows developers to monitor all the interac-
tions the ANDROID system has with the AUT. Instrumented
tests (also known as instrumentation tests) provide more
fidelity than unit tests, although they run much more slowly.

C. The ESPRESSO Testing Framework

Several testing frameworks have been proposed to help
ANDROID developers in writing automated tests, such as AP-
PIUM [18], CALABASH [19], ESPRESSO [1], MONKEYRUN-
NER [20], ROBOTIUM [21], and UIAUTOMATOR [22]. Of
these, ROBOTIUM and CALABASH are no longer maintained.
ESPRESSO [1] is an Instrumentation-based UI testing frame-
work, officially supported by the ANDROID ecosystem and
part of the AndroidX Test Repository [23]. This, and the
framework’s ability to provide concise and reliable UI tests,
has made it the most popular testing framework among devel-
opers [2], with a recent steady increase in adoption.



ESPRESSO provides an API that allows developers to pro-
grammatically simulate user interactions with the AUT. The
framework also enables developers to specify which ANDROID
activity should be launched at the start of each test using
a @Rule annotation. Furthermore, ESPRESSO enhances test
reliability by executing pending actions only when the AUT is
idle. Creating a reliable ESPRESSO test case involves writing:

• View Matchers to identify and select target views within
the current View Hierarchy. These matchers need to be
specific. If the view is not found or multiple views match
the criteria in a given screen, the test execution will fail.
For example, a matcher that locates a TextView by its text
will fail if the text is not unique in the UI.

• View Actions to perform actions on selected views. These
actions need to be adequate for the targeted views. For
example, a click action will fail if it is executed on a view
that is not displayed on the screen.

• View Assertions to verify the state (properties) of selected
views. The properties to check need to be valid for the
targeted view. For example, ImageView UI elements do
not have text, so using the withText assertion on such
views leads to an exception.

Figure 2 displays an ESPRESSO test as example.

D. Generating ANDROID Test Cases with MATE

Most test generation tools for ANDROID use the ANDROID
Accessibility Service [10] to retrieve information and interact
with an app. For years, ANDROID’s Accessibility Service
was the only official API that provided a way to retrieve
information about the UI and to interact with it. However, the
main purpose of the Accessibility Service’s API is to assist
users with disabilities in using ANDROID devices and apps,
and it is not designed for testing purposes. In particular, it
can return inconsistent information [9] such as imprecise class
names of views, incorrectly reporting the hint of a field as text
input, missing content description properties, and providing
texts with the wrong casing.

Although in principle the question of how to generate
ESPRESSO test cases is orthogonal to the question of what
test generation approach or tool to use, a proof of concept
requires adapting a concrete test generator to use ESPRESSO
APIs rather than the ANDROID Accessibility Service. We
chose the MATE [11] test generation tool in order to generate
sequences of interactions for ANDROID apps, and adapted it
to use ESPRESSO. Though MATE was originally designed to
find accessibility problems (e.g., missing content descriptions
for visible components), it has recently been extended to study
different evolutionary algorithms for test generation [24].

Internally, each test case in MATE is represented as a
sequence of actions on available views of the AUT. MATE
outputs an XML representation of the test cases, and a report
on the number of executed test cases, found crashes, and
achieved coverage. In order to generate test cases, MATE
(as well as other ANDROID test generators such as STOAT
or DYNODROID) requires to perform the following tasks:

TABLE I: View Actions used in ESPRESSOMAKER.

ESPRESSO action Description

pressBack() Clicks the “back” button.
clearText() Clears text on the view.
click() Clicks the view (i.e., single tap).
pressKey(ENTER) Presses the hardware enter key.
longClick() Long clicks the view (i.e., long single tap).
pressMenuKey() Presses the hardware menu key.
pressKey(SEARCH) Presses the hardware search key.
swipeDown() Performs a swipe top-to-bottom across the hori-

zontal center of the view.
swipeLeft() Performs a swipe right-to-left across the vertical

center of the view.
swipeRight() Performs a swipe left-to-right across the vertical

center of the view.
swipeUp() Performs a swipe bottom-to-top across the hori-

zontal center of the view.
typeText(String) Selects the view (by clicking on it) and types the

provided string into the view.

TABLE II: View Matchers used in ESPRESSOMAKER

ESPRESSO matcher Description

isRoot() The view is the root of the View Hierar-
chy.

withId(Integer) The view has a specific id.
withResourceName(String) The view has a specific resource name.
withText(String) The view has a specific text.
withContentDesc.(String) The view has a specific content descrip-

tion.
withClassName(String) The view has a specific class name.
allOf(ViewMatcher...) The view matches against all specified

matchers.
withChild(ViewMatcher...) The view matches only if one the view’s

direct child views matches against speci-
fied matchers.

withParent(ViewMatcher...) The view matches only if its parent view
matches against specified matchers.

• Given the current state of the app, retrieve the list of all
available actions.

• Given a chosen available action on the app, perform the
selected action.

• (Optionally) Having executed an action, contrast the
expected state of the app against the actual observed state.

All these tasks are conducted independently of the underlying
algorithm for generating the test cases. In other words, it is
possible to identify these tasks in search-based test generators
(e.g., MATE), model-based test generators (e.g., STOAT), or
probabilistic generators (e.g., DYNODROID).

III. GENERATING ESPRESSO TESTS

A fundamental task in automated test generation is collect-
ing available actions for an app in its current state. Given the
current screen, we refer as screen information to:

• The View Hierarchy of the current screen, which also
includes the properties of each view such as resource
identifier, text, and content description.

• The available ESPRESSO actions for each view in the
View Hierarchy.



(a) Using only the constraint R1,
the conjunction (C = R1) matches
three views in the hierarchy.

(b) Adding the constraint R2 to the
conjunction (C = R1 ∧R2) refines
the selection to only two views.

(c) Finally, adding the constraint
R3 (C = R1 ∧ R2 ∧ R3) narrows
down the selection to one view.

Fig. 3: Iteratively combining View Property Constraints to locate a target view in the View Hierarchy. Each box represents
a view in the View Hierarchy. Gray boxes indicate the views that match against the conjunction of constraints, while white
boxes indicate the views that do not match. The constraints used in this example are: R1 =WITH ID(v,R.id.button), R2 =
WITH ID(v.parent,R.id.layout) and R3 =WITH TEXT(v, “Bacon”)

• The package and activity name of the app being shown on
the screen. This is needed to know when a test generator
has “exited” the AUT.

Unfortunately, the ESPRESSO framework does not provide
direct access for retrieving the first two items. Nevertheless,
we can still access the View Hierarchy through reflection [25].

To obtain the actions that are available for a given view, we
iterate over all ESPRESSO actions listed in Table I. We filter
this list by checking for each action if it can be performed on
the view by calling the getConstraints method on the action.
This method allows View Actions to specify constraints that
the views have to satisfy in order to be considered as targets
for that action. For example, the click() action requires the view
to be shown on the screen (i.e., isDisplayed()).

A. Generating ESPRESSO View Matchers

Once the available views and actions have been determined,
the next step consists of creating an ESPRESSO View Matcher
for each targeted view using this information. View Matchers
are crucial since they serve the dual purpose of allowing
execution of View Actions and View Assertions. These View
Matchers must unequivocally locate the targeted view. A View
Matcher is unequivocal if there is one, and only one, view
in the View Hierarchy that matches against it. If the View
Matcher targets none or more than one view, the test execution
will end in a failure.

Constructing View Matchers for a targeted view might not
always be feasible due to the lack of unique properties to
unambiguously locate the view. This problem is mentioned
in the related literature as view disambiguation [9], [26]–
[28]. View Matchers are defined using resource identifiers
along other view properties (such as text, children and parent
views, etc.) Often, the targeted view has a unique resource
identifier which can be used to unequivocally locate it (i.e.,
using the ESPRESSO withId matcher). However, there are many
legitimate scenarios in which a targeted view may not have a
resource identifier or this identifier might not be unique. As

an example, consider the scenario in which the rows of a list
are rendered using an XML document (e.g., Fig. 1b). In such
a scenario, all rows share the same resource identifier.

Given a target view, our technique for generating an un-
equivocal ESPRESSO View Matcher starts by identifying a
set of constraints that are only satisfied by the target view;
i.e., these constraints must not be satisfied by any other
views in the View Hierarchy. For example, in Fig. 2 the
target view v satisfies the constraint v.resourceIdentifier ==
R.id.button while at the same time satisfying the constraint
v.parent.resourceIdentifier == R.id.layout.

In each of these constraints we can find the following
elements: there is a view that can be accessed by navigating
the View Hierarchy starting from the target view (e.g., v, and
v.parent), and there is a view property (e.g., resource identifier)
of the navigated view that has to match a given literal value
(e.g., R.id.button, and R.id.layout).

We define a View Property Constraint as a constraint on
a property of a view v using a value c. For example, the
constraint WITH ID(v, c) is defined as v.resourceIdentifier ==
c. Notice that v.resourceIdentifier == R.id.button can be
rewritten as WITH ID(v, R.id.button). Then, the View Matcher
in Fig. 2 for the target view v can be expressed as a conjunction
R1(v) ∧R2(v) of view property constraints, such that:

R1(v) = WITH ID(v,R.id.button)

R2(v) = WITH ID(v.parent,R.id.layout)

R1(v) states that the targeted view must have the value of
R.id.button as resource identifier. Additionally, R2(v) states
that the targeted view’s parent must have the value of
R.id.layout as resource identifier. Although R1(v) and R2(v)
are both parameterized by the target view v, the view on which
the constraint is checked differs in each case. In R1(v) the
constraint is checked on the target view v, while in R2(v) the
constraint is checked on v’s parent view. Thus, when the target
view is fixed (e.g., a given v) we directly use the “traversal”
path as the first argument of the view property constraint.



TABLE III: View Assertions used in ESPRESSOMAKER.

ESPRESSO assert. Description

doesNotExist The view does not exist in the View Hierarchy.
isDisplayed The view is displayed (and visible) at least 90%

on the screen.
isEnabled The view is enabled. The interpretation of the

enabled state varies by subclass.
isNotEnabled The view is not enabled.
isFocused The view is focused (i.e., the user is directly

interacting with the view).
isNotFocused The view is not focused.
isFocusable The view is focusable (i.e., it can receive the

focus).
isNotFocusable The view is not focusable.
hasFocus The view has focus. This means that the view or

one of its descendants is focused.
doesNotHaveFocus The view does not have focus.
isSelected The view is selected. This is not the same as

focus, it refers to the selected status in the context
of a list or similar (e.g., view is highlighted).

isNotSelected The view is not selected.
isChecked The view is checked. This can only be true for

“checkable” views such as a CheckBox.
isNotChecked The view is not checked.
isClickable The view is clickable (i.e., the view accepts and

reacts to click/tap events).
isNotClickable The view is not clickable.
hasLinks The view is a TextView and contains URLs.
hasContentDesc. The view’s content description is not null (can be

empty String).
withText The view has a specific text.
hasErrorText The view has a specific error text.
withContentDesc. The view has a specific content description.
withHint The view has a specific hint.
withAlpha The view has a specific opacity. This is a value

from 0 to 1, where 0 means the view is completely
transparent and 1 means the view is completely
opaque.

hasChildCount The view has a specific number of children in the
View Hierarchy. This is value is always 0 if the
view is not a ViewGroup.

withInputType The view is an Editable object and has a specific
type of basic content (e.g., text, number, pass-
words, etc.).

withParentIndex The view is a child with the specific index in its
parent.

withVisibility The view has a specific Visibility state. Possible
values are Visible, Invisible, and Gone. Invisible
means that the view is not visible, but it still takes
up space for layout purposes. Gone means that the
view is invisible and it does not take up any space.

In summary, the view property constraints represent the
building blocks that will be later used for building the actual
ESPRESSO View Matcher. If the conjunction of constraints
is unequivocal there will be one and only one view in the
hierarchy that matches against all constraints simultaneously.
Thus, by iteratively adding constraints to a conjunction we aim
to build an expression that unequivocally identifies a target
view in the View Hierarchy. This is illustrated in Fig. 3.

Algorithm 1 outlines the steps for generating unequivocal
View Property Constraint conjunctions. This algorithm starts
by checking if the input view v is the root of the View
Hierarchy t. In that case, we simply return the IS ROOT
constraint. Otherwise, we iterate over all views in the View
Hierarchy t (including v itself). For each view v′ in t, we

Algorithm 1: Algorithm for generating an unequivocal
View Property Constraint conjunction

Input : View v, View hierarchy tree t
Output : View Property Constraints conjunction C

1 if v does not have parent do
2 return IS ROOT(v)

3 C ← True
4 for View v′ ∈ t do
5 path← PATHTOVIEW(v, v′, t)
6 for Constraint P ∈ BASIC CONSTRAINT TYPES do
7 if type is valid for v′ do
8 value← GETVALUE(v′, P )
9 C ← C ∧ P(path, value)

10 if C is unequivocal do
11 return GETMINIMALCOMBINATION(C)

12 return Null

determine the path that needs to be traversed in t from v to v′.
For example, a navigation path might state that in order to get
from v to v′, we need to go “up” to v’s parent view and then
go “down” to the parent’s first child. We add one constraint
to C for each basic constraint type (namely, resource name,
resource identifier, text, content description and class name).
Each constraint is only added if the property that it checks is
defined for v′. For example, a text constraint will not be added
for a view without text. The value that the constraints will
match against is the actual value observed for each property
in v′. Finally, C is returned once we find an unequivocal
conjunction. If no such conjunction exists, we return Null and
omit v from the available actions for the current screen.

Once an unequivocal View Property Constraint conjunction
is found, we minimize it. A conjunction is minimal when re-
moving any constraint leads to matching against more than one
view in the View Hierarchy. This minimization is performed
by means of Delta Debugging [29].

Once we have successfully found a minimized unequivocal
View Property Constraint conjunction, we translate it into
a corresponding ESPRESSO View Matcher. Algorithm 2 de-
scribes the steps taken to perform this task. The algorithm
starts by creating an “AllOf” View Matcher: a recursive
matcher that selects a view only if it matches against all the
specified inner matchers. For each View Property Constraint
in the conjunction, the AppendInnerMatcher function recur-
sively builds the ESPRESSO View Matcher that satisfies the
constraint’s path and type, and appends it where necessary.

As an example, consider the View Property Constraint
conjunction R1(v) ∧R2(v) such that

R1(v) = WITH ID(v.parent,R.id.button)

R2(v) = WITH TEXT(v.parent, ”Bacon”)

First, the algorithm executes AppendInnerMatcher on R1,
producing the partial ESPRESSO View Matcher

a l l O f ( w i thParent ( w i t h I d (R. i d . but ton ) ) )



Algorithm 2: Generation of ESPRESSO View Matcher
Input : View v, View Property Constraint conjunction C
Output : ESPRESSO View Matcher M for selecting v

1 Function BUILDESPRESSOVIEWMATCHER(v, C)
2 M ← ALLOF([])
3 for Constraint c ∈ C do
4 type← GETTYPE(c)
5 path← GETPATH(c)
6 APPENDINNERMATCHER(M, v, type, path)

7 return M

8 Function APPENDINNERMATCHER(M, v, type, path)
9 if path is empty do

10 if type = WITH RESOURCE NAME do
11 newMatcher ←

WITHRESOURCENAME(GETRESOURCENAME(v))

12 if type = WITH ID do
13 newMatcher ← WITHID(GETID(v))

14 if type = WITH TEXT do
15 newMatcher ← WITHTEXT(GETTEXT(v))

16 if type = WITH CONTENT DESCRIPTION do
17 newMatcher ←

WITHCONTENTDESCRIPTION(GETCONTDESC(v))

18 if type = WITH CLASS NAME do
19 newMatcher ←

WITHCLASSNAME(GETCLASSNAME(v))

20 M.matchers.APPEND(newMatcher)

21 else
22 nextStep← HEAD(path)
23 if nextStep = MOVE TO PARENT do
24 if M.matchers does not contain a

WithParent matcher do
25 newMatcher ← WITHPARENT()
26 M.matchers.APPEND(newMatcher)

27 else
28 newMatcher ←

GETPARENTMATCHER(M.matchers)

29 else
30 if M.matchers does not contain a WithChild

matcher do
31 newMatcher ← WITHCHILD()
32 M.matchers.APPEND(newMatcher)

33 else
34 newMatcher ←

GETCHILDMATCHER(M.matchers)

35 remainingPath← TAIL(path)
36 w ← GETVIEWAFTERSTEP(v, nextStep)
37 ADDMATCHERFORPATHANDTYPE(newMatcher, w,
38 type, remainingPath)

39 return M

Then, the algorithm executes AppendInnerMatcher on R2,
producing the final ESPRESSO View Matcher:

a l l O f ( w i thParent ( a l l O f (
w i t h I d (R. i d . but ton ) , w i thText ( ” Bacon ” ) ) ) )

Table II lists all the ESPRESSO View Matchers used by the
algorithm.

Algorithm 3: ESPRESSO View Assertion Generation
Input : Test case tc, Assertion level L
Output : List of assertions A

1 A← []
2 if L == None do
3 return A

4 Start AUT
5 lastScreen← ∅
6 for Action a ∈ tc do
7 EXECUTEACTION(a)
8 currentScreen← GETSCREENINFO()
9 if L == Full∨ (L == SemiFull∧ lastScreen == ∅)

do
10 for View v ∈ GETALLVIEWS(currentScreen) do
11 for attr ∈ GETATTRIBUTES(v) do
12 A.APPEND(
13 BUILDATTRIBUTEASSERTION(v, attr))

14 else
15 screenDiff←

COMPUTESCREENDIFF(currentScreen, lastScreen)
16 for View v ∈ GETCOMMONVIEWS(screenDiff) do
17 for attr ∈ GETATTRIBUTESDIFF(screenDiff, v)

do
18 A.APPEND(
19 BUILDATTRIBUTEASSERTION(v, attr))

20 for View
v ∈ GETDISAPPEARINGVIEWS(screenDiff) do

21 A.APPEND(DOESNOTEXIST(v))

22 for View v ∈ GETAPPEARINGVIEWS(screenDiff) do
23 A.APPEND(ISDISPLAYED(v))
24 if L == SemiFull do
25 for attr ∈ GETATTRIBUTES(v) do
26 A.APPEND(
27 BUILDATTRIBUTEASSERTION(v, attr))

28 lastScreen← currentScreen

29 return A

B. Generating ESPRESSO View Assertions

In software testing, an assertion is a statement that checks if
a specific property of the program state matches its expected
value. If the actual value differs, the assertion fails the test
case. The ESPRESSO framework employs assertions to ensure
that a selected view of the UI is in the desired state.

We present an assertion generation algorithm for ESPRESSO
(Algorithm 3) based on Xie’s algorithm [30], which consists of
tracing the values of all observable attributes after each step
of a test case, and then inserting regression assertions that
capture these values. Intuitively, the conventional approach of
generating assertions for all attributes of all views and then
filtering non-relevant assertions through mutation analysis [31]
is unlikely to be feasible for ESPRESSO assertion generation
due to the high number of views and attributes in an ANDROID
app, and the costly execution time of ANDROID test cases.
Algorithm 3 therefore executes each test action one at a time,
determining at each step which assertions to add to the test
case based on the current and previous View Hierarchies, using



the observed values as expected values in the assertions. It can
be configured in four different levels of assertion generation:
Full, SemiFull, DiffOnly, and None:

• The Full level generates assertions for all attributes of all
views in the View Hierarchy (i.e., ignoring the previous
View Hierarchy). While this likely results in large num-
bers of (possibly non-relevant) assertions, it serves as a
baseline for comparison with the other levels.

• The DiffOnly level generates assertions only for attributes
(such as text) that have changed in common views
between consecutive screens. It also adds assertions when
views appear (or disappear) from the UI. The rationale
behind this level is that the most relevant assertions are
those that check for parts of the UI that are dynamically
updated. This approach significantly reduces the number
of assertions generated, but it can also result in missing
assertions for attributes that do not change across the
execution of a test case.

• The SemiFull level aims to mitigate this issue by not
only asserting attributes of common views between con-
secutive screens, but also of appearing views (i.e., views
present in a screen but absent in the screen immediately
before). This level then adds assertions for attributes that
have changed in common views (same as DiffOnly), and
assertions for all attributes of appearing views.

• Finally, the None level does not generate any assertions.
Table III lists the ESPRESSO View Assertions generated by
the algorithm.

IV. EVALUATION

In order to investigate the necessity and effectiveness of
creating ESPRESSO tests, we aim to empirically answer the
following research questions:
RQ1(Motivation): Are resource identifiers sufficiently unique
for building ESPRESSO View Matchers?
RQ2(Reliability): Are the ESPRESSO tests generated by
ESPRESSOMAKER more reliable than the ones generated with
a translation-based approach?
RQ3(Assertions): Are the ESPRESSO assertions generated by
ESPRESSOMAKER effective at detecting faults?

A. ESPRESSOMAKER’s Implementation

The algorithms presented in Section III were implemented
as an extension of MATE. We refer to this extension as
ESPRESSOMAKER throughout the article. MATE’s original
implementation uses an Instrumentation-based process to com-
municate with ANDROID’s Accessibility Service API for col-
lecting the AUT UI’s current state. In this original setup, the
AUT itself is run as a separate process without any instrumen-
tation. However, in order to use the ESPRESSO framework
within MATE, the latter needs to run in the same process
as the AUT. We refactored MATE’s architecture to include
a new Representation Layer that runs in the instrumented
AUT process, employs the ESPRESSO framework internally,
and informs the View Hierarchy and available actions to
MATE’s exploration module. Since both modules now run in

separate processes, they rely on the Android Interface Defini-
tion Language (AIDL) [32] for interprocess communication
using Remote Procedure Calls (RPC). ESPRESSOMAKER’s
implementation is publicly available on GitHub [12], [13].

B. Experimental Setup

Selection of Subjects Under Test: We evaluate ESPRES-
SOMAKER on a subset of the AndroZoo dataset [33]. We
initially downloaded 7,000 APKs randomly chosen from this
dataset and then performed a health check on each app to
exclude those that were non-functional or incompatible with
our experimental setup. We discarded 2,946 apps that were not
compatible with the x86 emulator architecture, and 1,228 apps
that crashed when running the MONKEY tool [34] on them for
1 minute. Additionally, we removed 1,791 apps that could not
be instrumented by MATE’s bytecode instrumentation, also
used in ESPRESSOMAKER, which is needed to measure code
coverage on APKs (AndroZoo does not provide apps’ source
code). This process resulted in 1,035 APKs.

Experiment Procedure: We used ESPRESSOMAKER’s im-
plementation to generate ESPRESSO tests for the 1,035 apps
in our dataset. We chose MATE’s Random Exploration al-
gorithm for generating test cases, which has been shown to
be one of the best performing algorithms for ANDROID test
generation [24]. We limit the generation budget to 10 test
cases (i.e., individuals) per subject, with a maximum of 15
actions (only GUI actions such as click, long click, type
text, etc.) allowed for each test case. Random Exploration
works by continuously sampling the search space until it
runs out of budget or the maximum number of actions is
reached. The generation of an individual is also halted when
the generation algorithm exits the AUT’s UI. On each iteration,
a completely new individual is created. The experiments were
fully automated, with no manual intervention (e.g., logins)
during MATE’s execution. Results for RQ1 are based on the
UI states and actions explored by ESPRESSOMAKER during
the test generation process.

For RQ2, we implemented the translation-based approach
proposed by Arcuschin et al. [9] in MATE. We compare the
reliability of the ESPRESSO tests generated by ESPRESSO-
MAKER against the tests generated by translation. We consider
a test to be “reliable” if it can be successfully executed (i.e.,
it does not fail). Note that ESPRESSO tests generated by the
translation-based approach do not contain assertions.

For RQ3, we consider the AndroZoo APKs from RQ2 for
which we were able to generate at least one passing (non-
flaky) ESPRESSO test (926 apps). Since flaky tests may affect
mutation analysis results, we re-executed the tests 3 times to
identify and remove flaky tests. We employed MUTAPK [35]
to generate mutants of these apps. MUTAPK takes as input
an APK and produces a set of modified APKs by applying
a set of predefined mutation operators. In our experiment,
we limited the mutation operators to only those that have
the potential to change the app’s UI, since the assertions
in ESPRESSO tests are based on the UI state. We discarded
the mutation operators leading to trivial mutants (such as the



ActivityNotDefined operator, which can only produce a crash
in the AUT) and non-observable mutants (e.g., operators that
do not change the AUT’s UI, such as InvalidActivityName).
For this process, two of the authors manually inspected each
mutation operator available in MUTAPK. When there was
disagreement, we reached consensus by discussing the mu-
tation operator. The final operators considered in our experi-
ment were: DifferentActivityIntentDefinition, WrongMainActivity,
MissingPermissionManifest, WrongStringResource, InvalidURI,
NullGPSLocation, InvalidDate, ViewComponentNotVisible, and
InvalidViewFocus. Given the large number of mutations (222
on average per app), we randomly sampled 10 mutants per
app. We also considered MUDROID [36] and DROIDMUTA-
TOR [37] for generating mutants. MUDROID’s implementation
is no longer maintained and we were unable to generate
mutants with it. DROIDMUTATOR requires source code, but
the AndroZoo dataset only contains binaries.

The experiments were conducted on a cluster comprising
12 nodes, each equipped with 2 Intel Xeon E5-2650 v2
CPUs (8 cores each) and 128 GB of RAM. We selected
ANDROID Lollipop (API 21) as the target platform for our
experiments. For measuring statistical significance, we relied
on the well-established Wilcoxon-Mann-Whitney U-test and
Vargha-Delaney A12 effect size [38].

C. Threats to Validity

Threats to internal validity might result from how the
empirical study was carried out. Our implementation effort
was large, so we compared different tools and picked the one
that better suited our needs. We chose to extend MATE for
implementing ESPRESSOMAKER due to its maturity (actively
maintained) and our prior experience working with it. How-
ever, the techniques presented in this work are not tied to
MATE and can be applied to other test generation tools as long
as they execute the generated test cases (e.g., on an emulator
or device). We used random exploration since a prior study
reported this to achieve best results [24]; the representation
should be independent of the algorithm used. To avoid possible
confounding factors when comparing ESPRESSOMAKER to
the translation-based approach, they were both implemented
on the same tool (MATE). Since parameter tuning can affect
the performance of algorithms [39], we used the same default
values for all parameters across experiments. For RQ3, we
aimed to mitigate bias by using the MUTAPK tool for muta-
tion analysis, and randomly selecting 10 mutants for each app.
We relied on mutation analysis as a proxy for fault detection.
Although mutation analysis is a well-established technique, the
artificial mutants might not be representative of actual defects.

Threats to external validity might result from how the
selection of subjects was carried out. To mitigate this threat,
we randomly downloaded 7,000 APKs from the AndroZoo
dataset [33], and only excluded those that were non-functional
or incompatible with our experimental setup. Another selection
of subjects might yield different results.

Fig. 4: Percentage of test cases successfully executed for RQ2.

D. Results RQ1: Are resource identifiers sufficiently unique
for building ESPRESSO View Matchers?

ESPRESSOMAKER encountered 4,387,217 views while gen-
erating ESPRESSO tests for the 1,035 apps in our dataset.
Developers only assigned 61.90% of the views a resource
identifier, for the remaining 38.10% the ANDROID platform
assigns a default resource identifier of −1. However, even
when developers assign resource identifiers these are not
always unequivocal: Only 46.00% of all views had an un-
equivocal resource identifier assigned, while 15.90% had a
non-unequivocal one. Overall, 38.10%+15.90% = 54.00% of
all views either lacked a developer-assigned resource identifier
or had a non-unequivocal assigned identifier, thus requiring a
non-trivial matcher for performing ESPRESSO actions on them.

ESPRESSOMAKER was able to generate an unequivocal
matcher combination for 92.45% of all views encountered. For
the remaining 7.55%, we manually inspected the affected apps
and found that these failures were caused by identical twin
views: sibling views (i.e., children of the same layout parent)
with identical attributes, which cannot be disambiguated by
adding additional information about their parents (since they
have the same parent) or children (because they do not have
children views or because the children are also identical). In
principle, this issue could be solved by making use of the
withParentIndex ESPRESSO View Matcher in Algorithm 2,
allowing ESPRESSOMAKER to specify the index of a child in
its parent view. We leave this as future work.

RQ 1: More than half of the views in our dataset do not
have an unequivocal resource ID, requiring a non-trivial

matcher to perform an ESPRESSO action on them.

E. Results RQ2: Are the ESPRESSO tests generated by
ESPRESSOMAKER more reliable than the ones generated with
a translation-based approach?

ESPRESSOMAKER generated 11,049 ESPRESSO test cases,
while the translation-based approach generated 11,255
ESPRESSO test cases; the minor difference was caused by
timeouts during ESPRESSOMAKER’s execution. Considering
the small number of such cases we believe this demonstrates
sufficient robustness of our results.Figure 4 illustrates the test
execution results: Among the 11,049 test cases generated by
ESPRESSOMAKER, 8,213 (74.33%) were successfully exe-
cuted, while only 2,714 (24.11%) passed for the translation-



Fig. 5: Mutation scores for Full and None assertion levels.

based approach. The difference is statistically significant ac-
cording to a Wilcoxon rank-sum test at α = 0.05 with p <
0.001, and a large Vargha-Delaney effect size of Â12 = 0.82.

RQ 2: Tests generated by ESPRESSOMAKER are
significantly more reliable than translated tests.

F. Results RQ3: Are the ESPRESSO assertions generated by
ESPRESSOMAKER effective at detecting faults?

We compare the mutation scores [40] (i.e., mutants detected
over evaluated mutants) of the (8,252 non-flaky) ESPRESSO
test cases with Full and no assertions (None).

Figure 5 illustrates the mutation scores achieved by the
ESPRESSO test cases using Full and None assertion levels, on a
total of 8,785 mutants. Test cases with Full assertions achieved
a mean mutation score of 19.09% (1,703 mutants killed), while
those with no assertions achieved 13.45% (1,202 mutants
killed). This difference is statistically significant (p < 0.001,
Â12 = 0.57). Notice that the mutants detected by tests cases
without assertions are either due to crashes or changes in the
UI leading to test errors: In contrast to unit-level testing, UI
testing relies on selectors, such as ESPRESSO View Matchers,
to locate and interact with UI elements. These selectors
are sensitive to UI changes, triggering test errors when the
specified conditions are no longer met.

The Full assertion level can potentially generate an in-
feasibly large number of assertions. While the tests without
assertions have a fixed length range of 1 to 15 statements,
depending on the number of actions performed by the test
case this increases to an average of 1,157 statements per test
for Full.The DiffOnly and SemiFull approaches aim to reduce
this, which they achieve successfully, with 262 statements per
test for SemiFull, and 29 for DiffOnly.

To see whether this reduction of the number of assertions
comes at the price of a drop in fault detection effectiveness,
we consider the mutant detection ratios: We find that Semi-
Full detected 89.08% of the mutants killed by Full, while
DiffOnly and None detected 71.29% and 63.30%, respectively.

Therefore, the different assertion levels introduce a trade-off
between the length of test suites and their ability to detect
faults. Considering that an unreasonably large number of
assertions like that of Full would make tests hard to maintain,
and considering also that the good fault detection capability
of SemiFull and DiffOnly assertions, using the SemiFull level
appears to be a good practical compromise.

RQ 3: Tests generated by ESPRESSOMAKER detect
significantly more mutants when including assertions.

To shed more light on these findings, we inspect the results
of the mutation analysis in more detail. In particular, the RQ3
results appear to show rather low mutation scores. Note that,
in order for a test case to detect a mutant, the following
must happen: (1) the mutated part of the program needs to
be executed, (2) the executed faulty part needs to change
the program state, and (3) the new behavior exhibited by the
mutant needs to be observed either with an assertion or a crash.

Unfortunately, it is common for the mutation operators in
MUTAPK to work at the XML level (e.g., the WrongStringRe-
source operator), which cannot be directly mapped to the
source code. This makes it difficult to measure exactly how
many mutants were executed (i.e., condition (1) from above)
as it is not always clear which part of the app is affected by the
mutation, and whether the mutated part is actually executed
by the test cases. In our experiments, 85.34% of the mutants
were produced by XML mutation operators. We analyzed
the remaining 14.66% mutants produced by code mutation
operators. By comparing the execution traces of the generated
ESPRESSO tests and the location of the modified bytecode in
mutants, we found that the mutated code of 65.07% mutants
was not reached by any of the test cases during our experi-
ments. Note that our experiment only consisted of sampling a
comparatively small set of test cases, rather than applying test
generation to fully optimize a test suite for coverage, hence the
low coverage of mutants is expected. However, having demon-
strated the effectiveness of the assertions in principle, it is clear
that increasing the tests’ coverage will lead to higher overall
mutation scores. Additionally, although we discarded mutation
operators leading to trivial or non-observable mutants, some
generated mutants may still be equivalent to the original apps;
this holds in general for mutation analysis.

To understand the impact of condition (3), we compared
the mutants created by MUTAPK against the assertions gen-
erated by ESPRESSOMAKER. The top five types of mutants
(comprising 98.11% of the total) were: WrongStringResource
(63.34%), MissingPermissionManifest (20.27%), ViewCompo-
nentNotVisible (5.10%), InvalidViewFocus (4.99%), and Dif-
ferentActivityIntentDefinition (4.41%). Table III shows the dif-
ferent types of assertions generated by the Full assertion
level. We find that the most common types of mutants are
well covered by these assertions: The withText assertions
tend to detect WrongStringResource mutants, the withVisibil-
ity assertions detect ViewComponentNotVisible mutants, and
the hasFocus, isFocused and isSelected assertions detect
InvalidViewFocus mutants. The isDisplayed assertions detect



MissingPermissionManifest and DifferentActivityIntentDefinition
mutants, which potentially produce larger UI changes, as well
as ViewComponentNotVisible mutants. Thus, the assertions
generated by ESPRESSOMAKER are well-suited for detect-
ing the UI changes introduced by MUTAPK mutants. Since
MUTAPK’s mutation operators are derived from a taxonomy
of real ANDROID faults [41], ESPRESSOMAKER’s assertions
are likely also useful for detecting real faults, but further
experiments are necessary to confirm this hypothesis.

V. RELATED WORK

A recent study on ANDROID test generation tools [9]
examined 101 articles and found only few tools that gen-
erate ESPRESSO tests, while most tools only yield crash
or exploration reports. For example, the popular MON-
KEY [34] random testing tool included in the ANDROID
SDK only reports uncaught runtime exceptions during ex-
ploration; the same holds for many research prototypes
such as DYNODROID [42], STOAT [43], APE [44], HU-
MANOID [45], TIMEMACHINE [46], Q-TESTING [47] or
COMBODROID [48]. Some tools use a custom output format
for tests, such as SAPIENZ [49] or MATE [11].

However, there are also tools that are able to generate
ESPRESSO tests. Rohella et al. [50] briefly mention that their
tool generates ESPRESSO tests, but do not provide any details
on how this is implemented. COBWEB [51] builds on the
ROBOLECTRIC [52] framework as an internal representation
of tests and transforms tests into ESPRESSO format later, but
unfortunately no description on how this is done is provided.
RACERDROID [53] modifies the ESPRESSO framework to
control event dispatching. It is unclear whether the ESPRESSO
test cases generated by RACERDROID can be run outside the
modified framework. DIFFDROID [28] extends MONKEY to
automatically generate ESPRESSO tests, but aims at automati-
cally finding cross-platform inconsistencies in ANDROID apps.
Notably, none of the above tools presents an evaluation on the
reliability of the generated ESPRESSO test cases.

The ESPRESSO test format is also used in record and
replay tools such as Espresso Test Recorder (ETR) [26] or
BARISTA [27]. However, these tools are integrated in AN-
DROID STUDIO and require manual interaction with the AUT,
whereas the focus of our work is automated test generation.

There are also approaches to convert existing test cases into
ESPRESSO format; for example, APPTESTMIGRATOR [54]
migrates test cases in ESPRESSO format between apps of the
same category (e.g., banking apps), and Coppola et al. [55]
presented an approach for translating test scripts from visual-
based tools into ESPRESSO test cases. However, both ap-
proaches focus on migrating existing manually written test
cases rather than automated test generation.

Similar problems of creating locators as done by ESPRES-
SOMAKER also exist in other domains. For example, ROB-
ULA+ [56] generates robust XPath locators for web testing.
While the aim is similar, the technical challenges are different
for XPath syntax and ESPRESSO.

Arcuschin et al. [9] studied the challenges of automatically
synthesizing ESPRESSO test cases from sequences of inter-
actions over ANDROID widgets, and concluded that the main
challenge for properly generating reliable ESPRESSO test cases
is the creation of non-failing ESPRESSO View Matchers. To
tackle this issue, various heuristics have been proposed [9],
[26]–[28], including checking the uniqueness of a view’s
resource identifier, leveraging child and parent information,
and properties such as class name or displayed text.

VI. CONCLUSIONS AND FURTHER WORK

In this work, we presented a technique for generating
reliable ESPRESSO test cases for ANDROID apps using novel
algorithms for generating ESPRESSO View Matchers to con-
cisely select ANDROID widgets, and for creating ESPRESSO
View Assertions that serve for regression testing. This tech-
nique was implemented in ESPRESSOMAKER, an extension
of the MATE testing tool for ANDROID test generation.
ESPRESSOMAKER is open-source and publicly available [12],
[13]. In summary, this article provides the following insights:

• The ESPRESSO framework can be used directly within an
ANDROID test generation tool for collecting the available
views and actions on any given screen.

• Concise and reliable ESPRESSO View Matchers for lo-
cating views in a UI can be generated automatically by
iteratively combining View Property Constraints.

• ESPRESSO View Assertions for regression testing can be
obtained by comparing the View Properties of the AUT
before and after the execution of an action.

Our comprehensive empirical study on 1,035 ANDROID
apps shows that ESPRESSOMAKER generates ESPRESSO tests
that are significantly more reliable across different bench-
marks, and that ESPRESSOMAKER generates ESPRESSO as-
sertions that are statistically better at detecting faults than
tests without assertions. For practical application, we present
two assertion levels, SemiFull and DiffOnly, that significantly
reduce the number of assertions, while still identifying a large
portion of the non-equivalent mutants detected. In the spirit of
transparency, reproducibility, and replicability, we provide a
replication package [14] containing our source code, the scripts
and the raw data collected during the empirical study.

As future work, we plan to continue our work on generating
ESPRESSO assertions for regression testing. Specifically, we
intend to explore the automatic generation of ESPRESSO
assertions by dynamically detecting potential UI invariants
in the apps under test [57]. Additionally, we plan to analyze
and improve the readability of the generated ESPRESSO tests.
We have taken initial steps in this direction by using Delta
Debugging to minimize ESPRESSO View Matchers, but we
plan to explore other techniques such as Large Language
Models to generate more readable test cases [58].
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