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Several tools for automatically testing Android applications have been proposed. In particular,

Sapienz is a search-based tool that has been recently deployed in an industrial setting. Although

it has been shown that Sapienz outperforms several state-of-the-art tools, it is still to be seen

what features of Sapienz impact the most on its effectiveness.

We conducted an extensive empirical studywherewe compare the impact of the search algorithm

and the usage of motif genes, a more compact representation of individuals. Our empirical study

shows that the usage of motif genes improves coverage both for evolutionary algorithms and

random approaches. In particular, it also shows that NSGA-II, the multi-objective evolutionary

algorithm used by Sapienz, does not have a clear improvement over other algorithms. In terms

of number of crashes detected, our study shows that both NSGA-II and Random Search per-

form similarly. While the usage of motif genes improves the crash detection of algorithms, is not

enough to make it statistically significant. These facts cast doubts about the use of evolution-

ary algorithms in the context of Android test generation and suggest that motif genes can have a

great impact on the overall effectiveness.
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1 INTRODUCTION

As software keeps becoming more important in our daily lives, the use of mobile devices such as smartphones and tablets increases as well. It
is estimated that mobile technologies are now used by two-thirds of the global population. Furthermore, mobile users universally consume more
digital minutes per person – more than double in the vast majority of countries and regions 1. In this context, smartphones have become the
dominant platform formobile time consumption, in terms of total minutes across everymarket. About 80% of all mobile time 1 is spent in application
consumption (commonly known as “apps”). As of November 2021, there are over 2.7 million applications available on Google’s Play App Store 2.

Despite their growing popularity, apps tend to contain defects which can ultimately manifest as failures (or crashes) to end-users. Similarly to
other software, testing mobile apps allows developers to ensure a minimum quality threshold for the applications they write. This process typically
involves manually writing test cases. Testing intends to assure that new features behave as expected and that changes to the source code do not
break previous existing functionality. However, testing is a very time consuming and error-prone task, and hence expensive, activity 3. To cope with
this problem„ different tools for automatically testing Android applications have been proposed 4.

Sapienz 5 is one of such tools, which has been proven to outperform several state-of-the-art tools like Dynodroid 6 and Monkey 7. In recent
years, a re-engineered version of the tool has been deployed in the software company Facebook 8. Essentially, the Sapienz approach presented in
Mao et al. 5 distinguishes from previous Android testing tools due to these two features:
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i) A multi-objective evolutionary algorithm (NSGA-II 9) that generates test sequences, simultaneously maximising statement coverage and
fault detection while minimising test length.

ii) The representation of test cases as sequences of atomic and motif actions.

where an atomic action is an event that cannot be further decomposed (e.g., pressing down a key, taping the screen at a certain coordinate, etc.).
On the other hand, motif actions are composed “events” (i.e., a sequence of atomic actions) that represents a usage pattern on the app.

Since these features (i.e., the NSGA-II algorithm combined withmotif actions) were presented simultaneously, we would like to study the impact
of each of them separately. What is more, Mao et al. 5 only performed cross-tool comparisons of their technique. This type of comparisons are
undesirable since they might have conflating factors arising from implementation details.

In particular, we are interested in comparing different choices of evolutionary algorithms for Android test generation. Sell et al. 10 presented a
study comparing different algorithms for Android test generation, but these algorithms are evaluated on the testing tool MATE 11. Among other
differences, MATE differs from Sapienz in that it uses a widget-based representation of individuals. Widgets are interactive components on an
Android UI (such as buttons, text fields, etc.). In contrast, Sapienz individuals are based on sequences of actions that do not depend on widgets (i.e.,
the atomic and motif actions mentioned above use only screen coordinates). This difference affects how evolutionary operators (such as crossover
and mutation) are performed. Therefore, we would like to study how different evolutionary algorithms might behave by implementing them on
the Sapienz tool. Also, it has been shown that (at least for unit test generation), due to flat fitness landscapes and often simple search problems,
Random Search 12 can perform as well as evolutionary algorithms, and sometimes even outperform them 13. Thus, we would also like to study the
choice of Random Search for Android test generation.

Therefore, in this paper, we aim to gain more insight into the effects of the main features of Sapienz: the choice of the NSGA-II multi-objective
algorithm and the representation of the individuals using motif actions. Specifically, the contributions of this paper are the following:

• Experiment design: We present an empirical study comparing the effectiveness in terms of statement coverage and crash detection of 9
different algorithms for Android test generation (namely, Random Search, Random Search with motif actions, Standard GA, Monotonic GA,
Steady-State GA, (µ + λ) EA, (µ, λ) EA, NSGA-II and NSGA-II with motif actions) using 38 experimental subjects (8 open-source and 30
popular closed-source real-world Android apps). This study (Section 4) involves both algorithms with and without motif actions, as well as
a Random Search approach that will serve as a baseline for comparison. The total execution time was 202 days.

• Experiment results:We present the results of our empirical study (Sections 4.2, 4.3 and 4.4), leading to a total of 2430 data-points.

Our empirical study yields the following findings:

• Both NSGA-II and Random Search improve their coverage when test cases include motif actions.

• Among all the evolutionary algorithms considered in our study, NSGA-II is the one achieving the highest statement coverage. Surprisingly,
NSGA-II does not distinguish with statistical significance from Random Search.

• Both NSGA-II and Random Search marginally improve their crash detection when test cases include motif actions. Nevertheless, this
difference is not statistically significant.

• Whether using motif actions or not, NSGA-II and Random Search detect a similar number of crashes.

In summary, our experiment provides evidence that the causes for Sapienz performance gains are more attributable to the representation of
test cases including motif actions rather than to the usage of a specific evolutionary approach.

This article extends our previous paper 14 by:

• Adding two new research questions related to crash detection. In our previous work we analysed the usage of evolutionary algorithms and
motif actions only in terms of statement coverage. This paper now includes a specific section analysing their impact on Sapienz’s crash
detection performance. This new analysis follows the same rigour that was used for the previous work: 30 repetitions over 8 different apps
and a thorough statistical analysis.

• Adding a research question that specifically targets closed-source real-world subjects. In our previous work we only experimented on
subjects taken from the F-Droid1 repository of open-source Android applications. This paper now includes a specific question analysing
whether the results seen before also hold for popular applications taken directly from the Google Play Store2.

1https://f-droid.org
2https://play.google.com/store/apps

https://f-droid.org
https://play.google.com/store/apps
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FIGURE 1 Representation of individuals in evolutionary algorithms as presented by Mao et al. 5

• Providing a detailed description of the 7 algorithms involved in the study: Random Search, Standard GA, Monotonic GA, Steady-State GA,
(µ+ λ) EA, (µ, λ) EA, and NSGA-II.

• Providing the pseudocode of the MotifCore component which is used in Sapienz for executing both the atomic and motif actions.

• Updating the related work section with new empirical studies published since our previous paper.

The remainder of this article is organized as follows: Section 2 and Section 3 present the necessary background. In particular, they briefly
introduce the techniques considered for the empirical study. Section 4 presents the empirical study along with the results obtained. Section 5
discusses closely related work. Finally, Section 6 concludes the paper and outlines potential future works.

2 BACKGROUND

Evolutionary Algorithms (EAs) are a specific type of population-based meta-heuristic. These algorithms are used to solve optimisation problems
and work by mimicking the process of natural selection. They typically start with a randomly generated population (i.e., a set of individuals). Each
individual in the population represents a solution to the optimisation problem. Then, several iterations evolve the population towards a given goal.
To produce a new generation, the fittest individuals are selected according to some selection mechanism (e.g., rank selection, tournament selection,
etc.). After this, the new offspring is generated by applying genetic operators like crossover and mutation with certain parametric probabilities.

2.1 Representation of individuals
The representation of individuals in Sapienz follows the Whole Test Suite generation (WTS) 15 principles. WTS evolves whole test suites for an
entire coverage criterion at the same time (i.e., statements in the system under test). In WTS, each individual is a test suite (i.e., a set of test cases).
Each test case can be seen as a “chromosome” of the individual. Then, each of these chromosomes will be represented as a sequence of genes
(test events).

In our context, and to make comparisons between Sapienz and other algorithms fair, these genes will consist of a combination of atomic and
motif genes. As defined by Mao et al. 5, an atomic gene is an event that cannot be further decomposed (e.g., press down a key, tap screen at a
certain coordinate, etc.), while amotif gene is interpreted as a sequence of atomic events 〈e1, . . . , ep〉. This representation is depicted in Figure 1.

Eachmotif gene defined represents a usage pattern on the app. These patterns follow common user behaviour, such as filling-in all text fields in
the current screen and then clicking a button. As such,motif actions are based on the User Interface (UI) information available on the current screen.

2.2 Optimisation goals
To guide the exploration towards a desired goal (i.e., covering all statements in the system), a fitness function must be defined. This function will
evaluate each individual in the population. Then, individuals with better fitness values aremore likely to survive and propagate their genes to further
generations. In the context of test suite generation, the fitness functions are typically based on structural coverage criteria such as statement
coverage or branch coverage.

In many cases, it is desirable to optimise the generated test cases towards multiple (possibly conflicting) optimisation goals. A simple mechanism
for combining multiple coverage goals is through a weighted linear combination 16. However, a linear combination requires non-conflicting optimi-
sation goals (e.g., high statement coverage and high mutation score 17). For instance, a tester would like to obtain a test suite with higher statement
coverage and fewer test case length, for debugging and maintenance purposes. It is easy to see that these objectives are conflicting: increasing test
length might lead to higher statement coverage while decreasing test length might reduce the coverage. Multi-objective evolutionary algorithms
are especially focused on targeting several (possibly conflicting) goals simultaneously.
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Algorithm 1: Random Search
Input : Stopping condition C , Fitness function δ, Population size ps, Selection function sf
Output: Population of optimised individuals P

1 P ←− {}
2 while ¬C do
3 NP ←− GenerateRandomPopulation(ps)
4 PerformFitnessEvaluation(δ,NP )
5 P ←− Selection(sf , P ∪NP )

6 return P

Algorithm 2: Standard GA
Input : Stopping condition C , Fitness function δ, Population size ps, Selection function sf , Crossover function cf , Crossover probability

cp, Mutation functionmf , Mutation probabilitymp
Output: Population of optimised individuals P

1 P ←− GenerateRandomPopulation(ps)
2 PerformFitnessEvaluation(δ, P )

3 while ¬C do
4 NP ←− {} ∪ Elitism(P )

5 while |NP | < ps do
6 p1, p2 ←− Selection(sf , P )

7 o1, o2 ←− Crossover(cf , cp, p1, p2)
8 Mutation(mf ,mp, o1)
9 Mutation(mf ,mp, o2)

10 NP ←− NP ∪ {o1, o2}

11 P ←− NP
12 PerformFitnessEvaluation(δ, P )

13 return P

2.3 Random Search
Random Search 12 (cf. Algorithm 1) is a simple approach for the test suite generation problem. It consists of repeatedly sampling candidates from
the search space. Once the budget is exhausted, the fittest sampled individual is returned. Due to its simplicity, it is very useful as a baseline for
studying the contributions of any proposed technique.

For unit test generation, it has been shown that Random Search performance is often as effective as other evolutionary algorithms, and it can
also outperform them if the system under test is simple enough 13.

2.4 Genetic Algorithms
In this study we will use the Standard Genetic Algorithm (GA) as described by Campos et al. 18 (cf. Algorithm 2). It starts by generating an initial
random population of size ps. The population is then evaluated using a fitness function δ. Each iteration (i.e., “generation”) of the algorithm consists
of building a new population and then evaluating each new individual in it. The newpopulation is created by repeatedly choosing a pair of individuals
from the current population and then, recombining them into two new individuals. The selection is done with a strategy sf such as rank-based,
elitism or tournament selection. The recombination is done with a crossover function cf such as single-point or multiple-point, with probability cp.
Before inserting the offspring into the new population, mutation is applied independently on both, with probabilitymp. This probability usually is
1
n
, where n is the number of genes in a chromosome. This ensures that, on average, at least one gene is mutated on each offspring, maintaining

the diversity in the population.
Several variants of the Standard GA exist that strive to improve effectiveness. In particular, we consider the following alternatives:
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Algorithm 3:Monotonic GA
Input : Stopping condition C , Fitness function δ, Population size ps, Selection function sf , Crossover function cf , Crossover probability

cp, Mutation functionmf , Mutation probabilitymp
Output: Population of optimised individuals P

1 P ←− GenerateRandomPopulation(ps)
2 PerformFitnessEvaluation(δ, P )

3 while ¬C do
4 NP ←− {} ∪ Elitism(P )

5 while |NP | < ps do
6 p1, p2 ←− Selection(sf , P )

7 o1, o2 ←− Crossover(cf , cp, p1, p2)
8 Mutation(mf ,mp, o1)
9 Mutation(mf ,mp, o2)

10 PerformFitnessEvaluation(δ, o1)
11 PerformFitnessEvaluation(δ, o2)
12 if Best(o1, o2) is better than Best(p1, p2) then
13 NP ←− NP ∪ {o1, o2}
14 else
15 NP ←− NP ∪ {p1, p2}

16 P ←− NP

17 return P

Algorithm 4: Steady-state GA
Input : Stopping condition C , Fitness function δ, Population size ps, Selection function sf , Crossover function cf , Crossover probability

cp, Mutation functionmf , Mutation probabilitymp
Output: Population of optimised individuals P

1 P ←− GenerateRandomPopulation(ps)
2 PerformFitnessEvaluation(δ, P )

3 while ¬C do
4 p1, p2 ←− Selection(sf , P )

5 o1, o2 ←− Crossover(cf , cp, p1, p2)
6 Mutation(mf ,mp, o1)
7 Mutation(mf ,mp, o2)
8 PerformFitnessEvaluation(δ, o1)
9 PerformFitnessEvaluation(δ, o2)

10 if Best(o1, o2) is better than Best(p1, p2) then
11 P ←− P \ {p1, p2} ∪ {o1, o2}
12 else
13 P ←− P \ {o1, o2} ∪ {p1, p2}

14 return P

• Monotonic GA: Similar to the Standard GA, but it only includes either the best offspring or the best parent in the next population (cf.
Algorithm 3). This ensures that achieved fitness value does not decrease as the population evolves.

• Steady State GA: This algorithm uses the same replacement strategy as theMonotonic GA, but instead of creating a new population in each
generation, the offspring replaces parents in the current population immediately after they are mutated and evaluated (cf. Algorithm 4).
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Algorithm 5: (µ+ λ) Evolutionary algorithm
Input : Stopping condition C , Fitness function δ, Population size µ, Offspring size λ, Selection function sf , Mutation functionmf ,

Mutation probabilitymp
Output: Population of optimised individuals P

1 P ←− GenerateRandomPopulation(µ)
2 PerformFitnessEvaluation(δ, P )

3 while ¬C do
4 O ←− {}
5 forall p ∈ P do
6 for i←− 1, λ

µ
do

7 o←− Mutation(mf ,mp, p)
8 O ←− O ∪ {o}

9 PerformFitnessEvaluation(δ,O)

10 P ←− select best µ individuals from P ∪O

11 return P

Algorithm 6: (µ, λ) Evolutionary algorithm
Input : Stopping condition C , Fitness function δ, Population size µ, Offspring size λ, Selection function sf , Mutation functionmf ,

Mutation probabilitymp
Output: Population of optimised individuals P

1 P ←− GenerateRandomPopulation(µ)
2 PerformFitnessEvaluation(δ, P )

3 while ¬C do
4 O ←− {}
5 forall p ∈ P do
6 for i←− 1, λ

µ
do

7 o←− Mutation(mf ,mp, p)
8 O ←− O ∪ {o}

9 PerformFitnessEvaluation(δ,O)

10 P ←− select best µ individuals from O

11 return P

2.5 Evolutionary Algorithms
The (µ + λ) Evolutionary Algorithm (EA) 19 is a mutation-based algorithm 20 (cf. Algorithm 5). In this case, µ represents the size of parents and λ
the size of the offspring. For each individual in the current population, mutation is applied independently on each gene with probability 1

n
. After

mutation, the best µ individuals are selected among a combined pool of parents and offspring to constitute the new population. Therefore, parents
will be replaced only if a better offspring is found. A variant of this is a (µ, λ) EA, where the parents are discarded and the new µ individuals are
only selected among the offspring (cf. Algorithm 6).

3 THE Sapienz APPROACH

Sapienz 5 is a multi-objective Android test generation technique aiming at maximising code coverage and fault revelation, while minimising the
length of fault-revealing test sequences.

In order to copewith the conflicting goals (i.e., maximising coverage while minimising test length), Sapienz employs the NSGA-II 9 multi-objective
evolutionary algorithm (cf. Algorithm 7), which is widely-used in search-based software engineering (SBSE) research 21. This algorithm uses a fast
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Algorithm 7: NSGA-II multi-objective evolutionary algorithm
Input : Stopping condition C , Multi-objective fitness function δ, Selection function sf , Mutation functionmf , Mutation probabilitymp
Output: Population of optimised individuals P

1 P ←− GenerateRandomPopulation(µ)
2 PerformFitnessEvaluation(δ, P )

3 while ¬C do
4 O ←− {}
5 forall p ∈ P do
6 o←− Mutation(mf ,mp, p)
7 O ←− O ∪ {o}

8 F ←− sortNonDominated(P ∪O, |P |)
9 P ′ ←− {}

10 for each front F in F do
11 if |P ′| ≥ |P | then
12 break

13 calculate crowding distance for F
14 for each individual f in F do
15 P ′ ←− P ′ ∪ {f}

16 P ′ ←− sorted(P ′,≺c)
17 P ←− P ′[0 : |P |]

18 return P

non-dominated sorting with a selection operator which creates a mating pool by i) combining the parent and child populations, and ii) selecting the
bestN solutions according to fitness and spread. During the selection process, all objectives are combined using a Pareto-optimal 22 search-based
approach. Formally, an individual x is said to be dominated by another individual y (x ≺ y) according to a fitness function if and only if x is partially
less than y:

∀ i = 1, . . . , n, fi(x) ≤ fi(y) ∧ ∃ i = 1, . . . , n : fi(x) < fi(y)

Then, a Pareto-optimal set consists of all the non-dominated individuals (belonging to all solutions S):

P ∗ , {x ∈ S | @ y ∈ S, x ≺ y}

Therefore, a solution to the multi-objective optimisation problem is not a single point in the search space (as in WTS generation is), but a family
of points. In practice, this means individuals with longer test sequences are not discarded when they are the only ones finding faults, nor where
they are necessary to achieve higher code coverage. Thus, through its use of Pareto optimality, Sapienz progressively replaces the longer sequences
with shorter test sequences when they are equally good.

In Sapienz, one individual is a test suite. As mentioned previously, each individual consists of several chromosomes (test cases) and each chro-
mosome contains multiple genes (test events), which consist of a random combination of atomic and motif genes. Event sequences in the test
cases are generated and executed by a special component called MotifCore. This component combines random fuzzing and systematic explo-
ration, corresponding to the two types of genes Sapienz supports: atomic genes and motif genes. The behaviour of each motif gene depends on
the UI information available at the moment of its execution. These genes are used to perform common user patterns during the exploration, such
as filling-in all text fields on the screen and clicking the actionable buttons. The MotifCore’s full algorithm is depicted in Algorithm 8.

4 EMPIRICAL STUDY

Wewould like to investigate how the evolutionary algorithm and the representation of individuals in Sapienz affect the overall performance of test
generation. Thus, we pose the following research questions:

RQ1 (Representation)What is the contribution of motif genes in Sapienz coverage?

RQ2 (Algorithm)What is the contribution of the NSGA-II evolutionary algorithm in Sapienz coverage?
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Algorithm 8: Simplification of the MotifCore exploration strategy as presented by Mao et al. 5

Input : App Under Test A, test sequence T = 〈E1, E2, . . . , En〉, static strings S, UI ModelM
Output: Updated UI ModelM

1 for each event E in T do
2 if E is an atomic event then
3 execute atomic event E and updateM

4 if E is a motif event then
5 currentActivity ←− extractCurrentActivity(A)
6 uiElementSet←− extractUiElement(currentActivity)
7 for each element w in uiElementSet do
8 if w is EditText widget then
9 seed string s ∈ S into w

10 else
11 exercise w according to motif patterns in E

12 updateM

13 returnM

RQ3 (Representation)What is the contribution of motif genes in Sapienz crash detection?

RQ4 (Algorithm)What is the contribution of the NSGA-II evolutionary algorithm in Sapienz crash detection?

RQ5 How does the results on open-source apps compare to real-world closed-source ones?

In order to answer these questions, we conducted an empirical study. In the following subsection, we describe the experimental setup.

4.1 Experimental setup
We conduct two studies to answer the above research questions: Study “A” addresses RQ1 to RQ4 and Study “B” addresses RQ5. In both cases,
we tried to mimic the experimental setup used in Study #2 presented by Mao et al. 5 as close as possible.

4.1.1 Selection of Subjects Under Test
For Study “A”, we chose to use the 10 subjects already used in Study #2 of Mao et al. 5. These subjects were randomly picked by the authors of
Sapienz from the F-Droid repository of open-source Android applications. Two subjects were preliminary discarded (BabyCare and Hydrate) due
to missing source code (BabyCare) and dependencies on libraries that are no longer supported by the Android platform version used in our study
(Hydrate). The remaining 8 open-source subjects used in our study are shown in Table 1.

For Study “B”, we randomly selected 30 closed-source apps from the Google Play Store. These apps were chosen after a meticulous selection
process. The selection pool started with 531 apps: 200 taken from the overall Top 200 Free apps ranking, and 331 from the union of all Top 50 Free
apps ranking in any specific category (discarding the ones already present in the first 200 apps). From these 531 apps, only 275 support Android
KitKat (API 19) and x86 devices. The first is needed because it is the latest Android version supported by the Sapienz prototype publicly available
at GitHub. The second is needed to run the apps on emulators. Of those 275 apps, we randomly selected 30 suitable for the ELLA-customized 23

instrumentation. It is worth pointing out that these are real third-party apps that may use obfuscation and anti-debugging techniques, and could
be more difficult to instrument. The 30 closed-source subjects are shown in Table 2.

We have not chosen any of the apps presented in studies #1 and #3 of Mao et al. 5. Although the 68 apps Study #1 of Mao et al. 5 could have
been used in our Study “A”, we preferred to use the 10 apps presented in Study #2 of Mao et al. 5, since they had already been used in a study with
statistical analysis. Regarding the 1,000 Google Play apps used in Study #3 of Mao et al. 5, their package names are not present in the article so we
were unable to take a look at them.

Our rationale behind the selection of subjects for our studies “A” and “B” is meant to minimize possible threats to external validity. On one hand,
we decided to have one study using 8 open-source subjects. Since open-source software might not always be the best representative of real-world
subjects, we opted to favour a larger number of repetitions (30 per combination of subject & algorithm) to gain better statistical significance. On
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TABLE 1 Open-source subjects used in Study “A”.

Subject Description Ver. Date LOC

Arity Scientific calculator 1.27 2012-02-11 2,821
BookWorm Book collection manager 1.0.18 2011-05-04 7,589
DroidSat Satellite viewer 2.52 2015-01-11 15,149
FillUp Calculate fuel mileage 1.7.2 2015-03-10 10,400
JustSit Meditation timer 0.3.3 2012-07-26 728
Kanji Character recognition 1.0 2012-10-30 200,154
L9Droid Interactive fiction 0.6 2015-01-06 18,040
Maniana User-friendly todo list 1.26 2013-06-28 20,263

TABLE 2 Closed-source subjects used in Study “B”.

Subject Description Ver. Date Downloads

AccuWeather Weather alerts & live forecast info 5.8.6-free 2021-07-02 100,000,000+
Bitmoji Create your own personal emoji 10.47.177 2021-05-31 100,000,000+
Body Temperature Records Fever tracking application 1.0 2021-07-15 10,000+
Calorie Counter by Lose It A calorie counter & food diary diet app 7.1.1 2021-07-07 10,000,000+
ClipKey Clipboard manager 1.3.2 2017-05-07 500,000+
Craigslist Online classifieds 1.14.2 2021-04-13 1,000,000+
CT Prepares Emergency information for Connecticut residents 1.0.3 2016-11-01 5,000+
Daily Mail Online News app 4.0.1 2021-08-02 5,000,000+
Dark Horse Comics Read comics 1.3.17 2020-12-18 1,000,000+
Durham Bus Tracker Real time school bus location 1.6.0 2019-12-13 50,000+
Ecobee Smart home devices manager 3.2.2 2021-07-06 1,000,000+
Google Translate Text translation app 4.4.0.RC01.104701208 2021-06-01 1,000,000,000+
Indeed Job Search Job search app 4.6 2021-06-02 100,000,000+
Interval Timer Minimalistic timer 1.2.6 2021-05-24 5,000,000+
Mobills Budget Planner & Track your Finances 5.3.7 2021-08-23 5,000,000+
Move to iOS App for migrating to iOS 3.1.2 2021-05-18 50,000,000+
My Baby Firework Fireworks display with sound 2.116.5 2019-12-16 1,000,000+
My Baby Piano Piano display with sound 2.146.9 2019-12-16 5,000,000+
MyChart Health information storage app 5.1 2021-05-17 10,000,000+
Namshi Fashion & Beauty Online Shopping 3.0.4 2021-08-12 10,000,000+
Pandora Streaming Music, Radio & Podcasts 8.7.1 2021-05-20 100,000,000+
Remote for Roku by Codematics Smart TV control app 1.29 2021-06-15 1,000,000+
Roku Official Roku Remote Control 3.6.0.2281118 2021-05-08 10,000,000+
Snapseed A professional photo editor 2.19.0.201907232 2020-04-14 100,000,000+
SoftList Shopping List 2.5.0 2021-05-26 1,000,000+
SwingU Golf GPS & Scorecard 5.0.62 2021-06-28 1,000,000+
USA Today News app 3.1.3 2021-06-17 5,000,000+
VINDecoded VIN Check Report & History 8.3.0.0 2021-05-28 500,000+
Weather by WeatherBug Live Radar Map & Forecast 5.4.4.38 2021-06-30 10,000,000+
Yelp Find Food, Delivery & Services Nearby 9.33.0 2021-06-03 50,000,000+

the other hand, we decided to have another study (i.e., Study “B”) using closed-source subjects. Since these subjects were taken directly from the
Top Free rankings on the Google Play Store, we can assume that they are good representatives of popular real-world subjects. Thus, in this case
we settled with a single repetition per combination of subject and algorithm.
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4.1.2 Implementation
As we explained in Section 3, Sapienz 5 implements a multi-objective NSGA-II evolutionary algorithm, including a representation of individuals
as sequences of both atomic and motif genes. We extended the latest publicly available version of Sapienz at GitHub 24, adding the algorithms
described in Section 2. These algorithms were implemented using a very simple single-objective fitness function: an individual’s fitness is assigned
from the accumulated coverage achieved while running. Although it is possible to implement a multi-objective variant, we still decided to use
a single-objective fitness function since an important part of this empirical study consists on validating whether the use of a multi-objective
evolutionary algorithm (e.g., NSGA-II) actually improves effectiveness or if simpler single-objective evolutionary algorithms might achieve similar
results.

As the authors have stated, the current available version of Sapienz at GitHub 24 is regarded as “out-of-date and no longer supported”, with the
latest activity in the version history recorded inMay 2016. Due to this, we enhanced the latest version of Sapienz fixing some issues such as proper
time budget management, handling of timeouts when issuing commands to emulators, recovery from an emulator crash. Some of the problems in
the original implementation that we had to solve were:

• Initialization of emulators used out-of-date parameters that were no longer supported.

• Lack of time budget management and reliable timeout for commands to the emulator.

• Lack of proper device management to ensure that the failure of one or more devices when running a test case does not stop the whole
experimentation.

• Missing runtime information about the efficiency of each algorithm.

• Finally, hardcoded commands all over the source code prevented us from easily extending the runner to use other search-based algorithms.

Besides Sapienz, we have considered 8 algorithms that we have implemented in our extension of Sapienz. To be specific, Random Search (with
and withoutmotif genes), Standard GA, Monotonic GA, Steady State GA, µ+λ EA, (µ, λ) EA and NSGA-II (i.e., Sapienz withoutmotif genes). All the
implemented algorithms and the enhanced Sapienz implementation are publicly available on GitHub3. For this article, we considered a subset of the
algorithms studied in 18. We discarded many-objective search algorithm (i.e., MOSA 25 and DynaMOSA 26) since these algorithms were originally
designed to work with approach level and branch distance, which are not provided by neither EMMA 27 nor ELLA-customized 23 tools, which we
use for collecting coverage information.

It is worth noticing that the MotifCore component of Sapienz (that handles the motif genes) was not modified. In other words, the atomic and
motif genes supported in this study are the same that were proposed by Mao et al. 5. To generate individuals without motif genes, we simply filter
the content of the test cases generated by the MotifCore component to leave only the atomic genes.

4.1.3 Parameters selection
The parameters were selected following the choices made in Study #2 of Mao et al. 5. For the crossover function, the uniform crossover operator
was used. For the mutation function, a combination of shuffling and one point crossover was used. The crossover and mutation probabilities were
set to 0.7 and 0.3, respectively. The selection function used for NSGA-II algorithm was the same as the one depicted by their original authors 9. The
selection function used for the single-objective EAs was roulette selection. The maximum number of generations was set to 100, although none
of the evolutionary algorithms accomplished this amount of generations. Population size for each generation was 50 individuals while individuals
were composed of 5 test cases. The initial length of each test case was randomly selected between 20 and 500 events. All of these parameters
were kept throughout all the executions. We opted to keep the parameters constant to ensure that comparison between the algorithms is fair;
since tuning the parameters for each algorithm might change their effectiveness 28,29.

4.1.4 Experiment Procedure
All test cases were generated on Android KitKat (API 19) because it is the latest Android version supported by the Sapienz prototype publicly
available at GitHub. All techniques are fully automated and no manual intervention was provided (e.g., logins) during the execution of the test
generators.

For each of these executions, we set a maximum time budget of 2 hours. We conservatively doubled the original 1 hour time budget used in
Mao et al. 5 to mitigate any emulator or hardware difference. This is by no means a threat to evolutionary approaches as more time budget allows
more fitness evaluations (i.e., more generations).

3https://github.com/FlyingPumba/evolutiz

https://github.com/FlyingPumba/evolutiz


Arcuschin et al. 11

For Study “A”, we executed all test generation algorithms in theMicrosoft Azure Cloud Computing Platform4. The type of virtual machine chosen
was D16s_v3, which features 16 cores and 64GB of RAM. The operating system installed on these virtual machines was Ubuntu 14.04. On each
16 core machine, 16 Android emulators were launched. These emulators are all used at the same time when generating test cases for one app.

As was mentioned before, for Study “A” we decided to run 30 repetitions on each open-source subject to gain statistical significance. Therefore,
the total experimentation time for Study “A” was 9 algorithms ×8 apps ×30 repetitions ×2 hours each = 4, 320hs (i.e., 180 days a 16 core machine).
If we consider the invested time for emulation, this represents 4, 320hs× 16 emulators = 69.120hs (i.e., 2, 880 days).

On the other hand, Study “B” was executed on a desktop computer with 8 cores and 32GB of RAM running Ubuntu 18.04. On this machine,
only 8 Android emulators were launched for each run. In contrast to Study “A”, only a single repetition was run for each combination of algorithm
and app. Thus, the total experimentation time for the closed-source subjects was 9 algorithms × 30 apps × 1 repetition × 2 hours each = 540hs

(i.e., 22.5 days of a 8 core machine). If we consider the invested time for emulation, this represents 540hs×8 emulators = 4, 320hs (i.e., 180 days).
In the Sapienz prototype available at GitHub, theMotifCore component is used for both generating new random test sequences and for executing

a given test sequence. The latter is required for obtaining the statement coverage of a test suite. However, we found that this component has a
known defect which hinders obtaining the correct fitness value while generating new test sequences. Hence, it was required to re-execute the
generated random tests to obtain their correct fitness value. Consequently, to avoid penalizing those approaches that heavily rely on random test
generation (such as Random Search) we do not consume any time budget during random test case generation with the MotifCore component.

4.1.5 Experiment Analysis
For Study “A”, statement coverage for the generated test suites was obtained automatically using the EMMA tool 27. For Study “B”, method coverage
was used instead, provided automatically by the ELLA-customized tool 23. This tool is an improved version (e.g., it adds multi-dex support) of the
original ELLA tool 30. It was developed and first used in the paper by Wang et al. 31. For the single objective genetic algorithms (i.e., Standard GA,
Monotonic GA, Steady State GA, µ+ λ EA and (µ, λ) EA) we report the statement coverage achieved by the best individual (i.e., the one with the
highest coverage) in the last generation. For Random Search, we report the highest coverage achieved by any individual randomly sampled. For the
multi-objective NSGA-II algorithm, since the solution is not a single individual but a set of individuals (i.e., the Pareto-optimal front), we report the
highest statement coverage achieved by an individual in the Pareto-optimal front.

The number of crashes detected for a given test suite was computed as the number of unique crashes triggered during its execution. This is
important since the same crash may arise from different test sequences. As defined by Mao et al. 5, a crash is considered to be unique when its
stack trace differs from all others.We also excluded all crashes which were not caused by faults from the subjects (e.g., those caused by the Android
system).

For the statistical analysis, we followed the same procedures as Panichella et al. 32 and Campos et al. 33 for comparing different randomized
algorithms over a set of subjects. Specifically, we apply the Friedman test 34 with significance level α = 0.05.

The Friedman test is a non-parametric test for multiple-problem analysis and it departs from the traditional tests for significance (e.g., the
Wilcoxon test) since it computes the ranking between algorithms over multiple independent problems, i.e., Android applications in our case. A
significant p− value indicates that the null hypothesis (i.e., no algorithm in the tournament performs significantly different from the others) has to
be rejected in favour of the alternative one (i.e., the performance of algorithms is significantly different from each other). If the null hypothesis is
rejected, we use the post hoc Conover’s test for pairwise multiple comparisons. Such a test is used to detect pairs of algorithms that are significantly
different. Finally, p−values obtained with the post hoc test are adjusted with the Holm-Bonferroni procedure to correct the statistical significance
level (α = 0.05) in case of multiple comparisons.

In the cases where we want to obtain a more detailed comparison between two algorithms for a given subject, we use the Wilcoxon-Mann-
Whitney U-test to determinewhether there is a statistically significant difference and the Vargha-DelaneyA12 effect size tomeasure this difference
(if any).

4.2 Study “A” results: coverage
Table 3 summarises the results of the experiment described in the previous section. We report the overall statement coverage and the rank of each
algorithm, procured by the Friedman test based on their average performance. Table 3 also reports the standard deviation and confidence intervals
(CI) using bootstrapping at 95% significance level of the statement coverage achieved.

Among all the algorithms evaluated, NSGA-II + motif genes (i.e., Sapienz) is the one that achieves the highest overall statement coverage (47%)
and CI. The p − value obtained from the Friedman test is 1.97e-09 . This means that we can reject the null hypothesis of the Friedman test (i.e.,

4https://azure.microsoft.com

https://azure.microsoft.com
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TABLE 3 Summary of coverage results for Study “A”: Overall coverage, standard deviation and rank of each algorithm based on their average
performance, which is statistically significant according to the Friedman test (p-value is < 0.0001, full data is available on Table 4). For averaged
coverage values we also report confidence intervals (CI) using bootstrapping at 95% significance level.

Algorithm Ranking Mean Ranking SD
Overall

Coverage Mean Coverage SD CI

NSGA-II + MG (Sapienz) 1.25 0.71 47.87 17.22 [45.68, 50.06]
Random Search + MG 2.12 0.35 46.95 17.65 [44.71, 49.23]
NSGA-II 3.00 1.41 44.07 18.71 [41.70, 46.47]
Random Search 4.19 0.37 43.78 18.57 [41.46, 46.16]
(µ+ λ) EA 5.12 1.36 41.79 17.79 [39.47, 44.06]
Monotonic GA 5.56 0.82 40.70 17.62 [38.46, 42.91]
(µ, λ) EA 7.62 1.06 37.23 17.85 [35.00, 39.51]
Standard GA 8.00 0.76 34.49 19.43 [32.05, 36.96]
Steady State GA 8.12 0.83 33.23 19.80 [30.70, 35.74]

TABLE 4 Full ranking of coverage achieved by algorithms for each subject on Study “A”.

(µ+ λ) EA (µ, λ) EA Monotonic
GA

NSGA-II NSGA-
II + MG
(Sapienz)

Random
Search

Random
Search +
MG

Standard
GA

Steady
State GA

Arity 5.00 9.00 6.00 1.00 3.00 4.00 2.00 8.00 7.00
BookWorm 3.00 8.00 4.00 6.00 1.00 5.00 2.00 7.00 9.00
DroidSat 8.00 6.00 4.50 2.00 1.00 4.50 3.00 8.00 8.00
FillUp 5.00 7.00 6.00 3.00 1.00 4.00 2.00 8.00 9.00
JustSit 5.00 7.00 6.00 3.00 1.00 4.00 2.00 9.00 8.00
Kanji 5.00 8.00 6.00 3.00 1.00 4.00 2.00 7.00 9.00
L9Droid 5.00 7.00 6.00 3.00 1.00 4.00 2.00 9.00 8.00
Maniana 5.00 9.00 6.00 3.00 1.00 4.00 2.00 8.00 7.00

Mean 5.12 7.62 5.56 3.00 1.25 4.19 2.12 8.00 8.12

there is at least one algorithm that differs from the rest). Table 4 shows the rankings achieved by each algorithm for every application. For example,
for subject Arity, NSGA-II achieved the best statement coverage, while (µ, λ) EA performed the worst in terms of that metric.

Table 5 shows the p − values obtained by the post hoc Conover’s test for pairwise comparison. These p − values indicate whether there
is statistical significance or not for each pair of algorithms. For example, although Table 3 shows that (µ + λ) EA achieved higher ranking than
Monotonic GA, Table 5 indicates that the p − value obtained for the post hoc Conover’s test is far greater than 0.05. Thus, there is not enough
evidence to support with statistical confidence that the average for (µ+ λ) EA is different from Monotonic GA.

Figure 2 shows visually the overall statement coverage achieved by each algorithm.

4.2.1 RQ1: What is the contribution of motif genes in Sapienz coverage?
To answer this question, we conduct a pairwise tournament between NSGA-II withmotif genes (i.e., Sapienz) and NSGA-II. Furthermore, to under-
stand whether motif genes contribute to major gains (even without using an evolutionary algorithm), we also add to the pairwise tournament
Random Search and Random Search with motif genes.

Table 6 summarises the results of the pairwise tournament. Given a particular subject, Algorithm X is considered to be better than Algorithm
Y for that subject if the result of the Wilcoxon-Mann-Whitney U-test gives a p − value < 0.05 (i.e., we can say with statistical confidence that
Algorithm X is different from Algorithm Y ) and the Vargha-Delaney A12 effect size is greater than 0.5. Colloquially, this means that Algorithm X

performs significantly better on a higher number of comparisons than Algorithm Y . If the p − value of the U-test is greater or equal than 0.05,
we can not conclude that AlgorithmX is neither better nor worse than Algorithm Y . The positions in the tournament are decided by ranking the
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TABLE 5 Results of the post hoc Conover’s test for pairwise analysis of coverage achieved on Study “A”. A p− value less than 0.05 for algorithms
X and Y means there is enough evidence to claim they are different with statistically significance.

(µ+λ) EA (µ, λ) EA Monotonic
GA

NSGA-II NSGA-
II + MG
(Sapienz)

Random
Search

Random
Search +
MG

Standard
GA

(µ, λ) EA < 0.05 - - - - - - -
Monotonic GA 1.000 < 0.05 - - - - - -
NSGA-II < 0.05 < 0.05 < 0.05 - - - - -
NSGA-II + MG (Sapienz) < 0.05 < 0.05 < 0.05 < 0.05 - - - -
Random Search 0.410 < 0.05 0.058 0.141 < 0.05 - - -
Random Search + MG < 0.05 < 0.05 < 0.05 0.462 0.462 < 0.05 - -
Standard GA < 0.05 1.000 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 -
Steady State GA < 0.05 1.000 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 1.000

FIGURE 2Overall coverage achieved by each algorithm on Study “A”. Middle line of each boxplot marks the median, black circles represent outliers,
? symbol shows the mean, and the red line represents the mean of all coverages (41%).

differences between the “Better than” and “Worse than” columns. For example, Sapienz has a difference of 16 − 0 = 16, while Random Search
with motif genes has a difference of 10− 3 = 7, which means the former should be higher in the tournament than the latter.

We can see that the first position is assigned to Sapienz with a significantly better performance in 16 out of 24 comparisons and an average
effect size of 0.86. Furthermore, in the remaining 8 of the 24 comparisons, Sapienz is not significantly worse. Surprisingly, the second position goes
to Random Search with motif genes. This algorithm has a significantly better performance in 10 out of 24 comparisons and an average effect size
of 0.90.

Overall, we can see in Table 6 a clear improvement of statement coverage on those algorithms that include motif genes over their counterparts
withoutmotif genes. In terms of statistical significance, Table 5 shows there is enough statistical evidence to hold that there is a difference between
both: NSGA-II and NSGA-II with motif genes (i.e., Sapienz) and between Random Search and Random Search with motif genes. We conjecture
that this increment is due to motif genes using a more compact representation than atomic genes. In other words, a complex user pattern can
be represented either with a sequence of N atomic events or one motif gene. This means that, as long as that particular gene keeps propagating
across generations, the pattern will survive in the population. On the other hand, if that same pattern is sprayed out into several dozens of events,
it would be easier for crossover and mutation operators to break it and lose its benefits. In summary, a more compact representation of test cases
might help trim the search space and achieve higher statement coverage.
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TABLE 6 Pairwise comparison of coverage achieved by algorithms with and withoutMotif Genes on Study “A”. “Better than” and “Worse than” give
the number of comparisons for which the best EA is statistically significantly (i.e., p − value of Wilcoxon-Mann-Whitney U-test less than 0.05)
better and worse, respectively. Columns Â12 give the average effect size.

Better Worse

Algorithm
Tournament
position

Overall
Coverage Mean than Â12 than Â12

NSGA-II + MG (Sapienz) 1.00 47.87 16/24 0.86 0/24 -
NSGA-II 3.00 44.07 1/24 0.66 10/24 0.07
Random Search + MG 2.00 46.95 10/24 0.90 3/24 0.32
Random Search 4.00 43.78 0/24 - 14/24 0.14

Result 1. RQ1: Motif genes have a significant impact on Sapienz coverage. In fact, both NSGA-II and Random Search improve their coverage when
test cases include motif genes.

4.2.2 RQ2: What is the contribution of the NSGA-II evolutionary algorithm in Sapienz coverage?

TABLE 7 Pairwise comparison of coverage achieved by evolutionary algorithms and Random Search on Study “A”. “Better than” and “Worse than”
give the number of comparisons for which the best EA is statistically significantly (i.e., p−value ofWilcoxon-Mann-Whitney U-test less than 0.05)
better and worse, respectively. Columns Â12 give the average effect size.

Better Worse

Algorithm
Tournament
position

Overall
Coverage Mean than Â12 than Â12

NSGA-II 1.00 44.07 36/48 0.88 2/48 0.31
Random Search 2.00 43.78 33/48 0.90 1/48 0.34
Standard GA 6.50 34.49 1/48 0.73 30/48 0.15
Monotonic GA 4.00 40.70 17/48 0.78 14/48 0.14
Steady State GA 6.50 33.23 1/48 0.68 30/48 0.09
(µ+ λ) EA 3.00 41.79 24/48 0.79 13/48 0.21
(µ, λ) EA 5.00 37.23 5/48 0.83 27/48 0.18

TABLE 8 Comparison of coverage achieved by evolutionary algorithms and Random Search on Study “A”. Statistically significant effect sizes are
shown in bold.

Random Search

Algorithm

Overall
Coverage
Mean Â12 p

NSGA-II 44.07 0.56 0.141
Random Search 43.78 - -
Standard GA 34.49 0.12 < 0.05

Monotonic GA 40.70 0.23 0.058
Steady State GA 33.23 0.08 < 0.05

(µ+ λ) EA 41.79 0.30 0.410
(µ, λ) EA 37.23 0.15 < 0.05
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FIGURE 3 Effect size Â12 of coverage achieved by EA X vs Random Search on Study “A”. Middle line of each boxplot marks the median, black circles
represent the outliers, N represents the mean of a significant effect size greater than 0.5 (i.e., EA X performs significantly better than Random
Search), H the mean of a significant effect size lower than 0.5 (i.e., EA X performs significantly worse than Random Search), × the mean of a no
significant effect size.

To answer this question, we conduct a pairwise tournament amongNSGA-II and the evolutionary algorithms presented in Section 2. As a baseline
for comparison, we also included Random Search to the tournament.

Table 7 summarises the results of the pairwise tournament. Among all the evolutionary algorithms evaluated, NSGA-II is the one that achieves
the highest overall statement coverage (44%). It is also significantly better than the other algorithms in 36 out of 48 comparisons, and only worst
in 2 out of 48. An averaged Â12 of 0.88 means that in the comparisons for which NSGA-II is significantly better than another algorithm, it obtains
a highest statement coverage in 88% of the repetitions.

This result is consistent with other studies such as the one performed by Campos et al. 33 for Java unit test case generation in which multi-
objective algorithms such as MOSA (a variation of NSGA-II) and DynaMOSA (a latter variation of MOSA) showed higher coverage over single
objective search-algorithms.

It is worth noticing that Random Search obtained the second-best place in this pairwise tournament. What is more, the p−value obtained from
the Conover’s post hoc test when comparing NSGA-II vs Random Search is higher than 0.05. This means that there is not enough evidence to reject
the null hypothesis (i.e., that NSGA-II is different from Random Search). To better understand what is the magnitude of this difference between
Random Search and evolutionary algorithms, we conducted a more detailed comparison and then calculated the average effect size. Table 8 shows
the results of this comparison. Figure 3 shows the results visually. As we can see, NSGA-II is the only algorithm that achieves an average effect
size higher than 0.5, but there is no statistical significance.

In other words, Random Search is at least as good as NSGA-II, Monotonic GA and (µ+λ) EA. For all the other evolutionary algorithms, Random
Search is better with statistical significance. In summary, this means that EAs are not contributing substantially to gain better statement coverage in
Android test generation. This result is also consistent with the study presented by Sell et al. 10 for Android test generation in which single-objective
and multi-objective algorithms do not perform better than random algorithms, and sometimes they even perform slightly worse.

In order to optimise a population towards a given objective, evolutionary algorithms require to evolve as many generations as possible. The cost
of a fitness evaluation directly affects the number of generations the EA can achieve. In particular, for Android test generation, in order to obtain
statement coverage for a given individual, evolutionary approaches need to: push the test case to a device/emulator, start the application, run
test case, gather fitness information and pull it from device/emulator. In 10, Sell et al. suggested that high execution costs hamper any meaningful
evolution for search algorithms. In our study, we observed that the fitness evaluation might take up to 60 seconds for a test case, depending on its
length. Overall, this resulted in approximately 30 generations for each EA on average. Having a population of 50 individuals, the maximum number
of fitness evaluations achieved within the time budget of 2 hours was on average 50× 30 = 1.500 fitness evaluations. Similar execution times can
also be found in the work of Vogel et al. 35, where authors report execution times of 101 minutes on average, and up to 5 hours, for running 10
generations of Sapienz on one app (using 10 Android emulators).

Finally, Table 5 indicates that there is not enough evidence to hold with statistical significance that NSGA-II with motif genes (i.e., Sapienz) is
different from Random Search with motif genes.
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Result 2. RQ2: NSGA-II evolutionary algorithm has amarginal impact on Sapienz coverage. Although, NSGA-II is better than the other evolutionary
algorithms considered, Random Search is at least as good as NSGA-II.

4.3 Study “A” results: crash detection

TABLE 9 Summary of crash detection results for Study “A”: Overall number of crashes, standard deviation and the rank of each algorithm based on
their average performance, which is not statistically significant according to the Friedman test (p-value is > 0.05, full data is available on Table 10).
For averaged number of crashes we also report confidence intervals (CI) using bootstrapping at 95% significance level.

Algorithm Ranking Mean Ranking SD
Overall

Crashes Mean Crashes SD CI

NSGA-II + MG (Sapienz) 1.75 0.93 1.20 0.78 [1.11, 1.30]
Random Search 2.56 1.18 1.10 0.67 [1.01, 1.18]
Random Search + MG 2.62 1.16 1.16 0.70 [1.07, 1.24]
NSGA-II 3.06 0.73 1.07 0.71 [0.98, 1.16]

TABLE 10 Full ranking of number of crashes achieved by algorithms for each subject on Study “A”.

NSGA-II NSGA-II + MG (Sapienz) Random Search Random Search + MG

Arity 3.50 1.00 2.00 3.50
BookWorm 3.00 1.50 4.00 1.50
DroidSat 4.00 3.00 1.00 2.00
FillUp 2.00 3.00 4.00 1.00
JustSit 4.00 1.00 3.00 2.00
Kanji 3.00 1.00 3.00 3.00
L9Droid 2.50 1.00 2.50 4.00
Maniana 2.50 2.50 1.00 4.00

Mean 3.06 1.75 2.56 2.62

To answer the research questions related to crash detection performance, we applied a similar analysis to the one used for statement coverage.
Given that the single-objective EAs only aim to improve the coverage of the population, and that NSGA-II was shown to outperform them in that
goal (cf. Section 4.2.2), in these RQs we compare only the top 4 algorithms of Table 3: NSGA-II and Random Search, both with and without motif
genes.

Table 9 summarises the results of the experiment regarding the number of unique crashes detected. Among all the algorithms evaluated, NSGA-
II +motif genes (i.e., Sapienz) is the one that achieves the highest overall crashes detected (1.2 on average) and CI. The p−value obtained from the
Friedman test is 0.188 . This means that we can not reject the null hypothesis of the Friedman test (i.e., there is not enough statistical confidence
to say that at least one algorithm differs from the rest). Table 10 shows the rankings achieved by each algorithm for every application. Figure 4
shows visually the overall statement coverage achieved by each algorithm.

4.3.1 RQ3: What is the contribution of motif genes in Sapienz crash detection?
To answer this question, we conduct a pairwise tournament among NSGA-II and Random Search, both with and without motif genes. Table 11
summarises the results of the pairwise tournament. The first position is assigned to Sapienz with a significantly better performance in 7 out of 24
comparisons and an average effect size of 0.63. Furthermore, in the remaining 17 of the 24 comparisons, Sapienz is not significantly worse. The
second position goes to Random Search with motif genes. This algorithm has a significantly better performance in 4 out of 24 comparisons and an
average effect size of 0.63. It is only significantly worse in 2 out of 24 comparisons.
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FIGURE 4Overall number of crashes detected by each algorithm on Study “A”. Middle line of each boxplot marks themedian, black circles represent
outliers, ? symbol shows the mean, and the red line represents the mean of all crashes (1.13).

TABLE 11 Pairwise comparison of crashes detected by NSGA-II and Random Search (with and withoutmotif genes) on Study “A”. “Better than” and
“Worse than” give the number of comparisons for which the best EA is statistically significantly (i.e., p− value of Wilcoxon-Mann-Whitney U-test
less than 0.05) better and worse, respectively. Columns Â12 give the average effect size.

Better Worse

Algorithm
Tournament
position

Overall
Crashes Mean than Â12 than Â12

NSGA-II + MG (Sapienz) 1.00 1.20 7/24 0.63 0/24 -
NSGA-II 3.00 1.07 0/24 - 4/24 0.34
Random Search + MG 2.00 1.16 4/24 0.63 2/24 0.40
Random Search 4.00 1.10 1/24 0.63 6/24 0.37

Overall, we can see in Table 11 a marginal improvement of crash detection on those algorithms that includemotif genes over their counterparts
without motif genes. Nevertheless, the fact that both Sapienz and Random Search with motif genes have an average effect size of 0.63 on the few
comparisons in which they are significantly different, means that the size of this difference is rather small (i.e., an average effect size of 0.5 means
there are no differences). It is also important to note that, in terms of crash detection, we can not reject the null hypothesis of the Friedman test
(p− value is greater than 0.05), so we can not claim that there are algorithms statistically different from the others.

Result 3. RQ3: Motif genes have a marginal impact on Sapienz crash detection. Although, both NSGA-II and Random Search improve their crash
detection when test cases include motif genes, this difference is not statistically significant.

4.3.2 RQ4: What is the contribution of the NSGA-II evolutionary algorithm in Sapienz crash detection?
To answer this question, we use the same pairwise tournament presented for RQ3 (Table 11). Again, because the p− value of the Friedman test
is greater than 0.05, we can not reject the null hypothesis and claim that there are algorithms statistically different from the others.

Although we can see in Table 11 a very small difference of crash detection when comparing NSGA-II vs. Random Search and Sapienz vs Random
Search withmotif genes, it is not clear whether we can claim that NSGA-II has anmarginal impact or not. If we look at the algorithms withoutmotif
genes, NSGA-II does not perform significantly better in any of the 24 comparisons, while Random Search performs significantly better in only 1 of
those comparisons. At the same time, Random Search performs significantly worse in 6 out of 24 comparisons, whereas NSGA-II only in 4.

Result 4. RQ4: NSGA-II evolutionary algorithm has a marginal or none impact on Sapienz crash detection. Whether using motif genes or not,
NSGA-II performs similarly to Random Search.
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4.4 RQ5: How does the results on open-source apps compare to real-world closed-source ones?

TABLE 12 Summary of coverage results for Study “B”: Overall coverage, standard deviation and the rank of each algorithm based on their average
performance, which is statistically significant according to the Friedman test (p-value is < 0.0001). For averaged coverage values we also report
confidence intervals (CI) using bootstrapping at 95% significance level.

Algorithm Ranking Mean Ranking SD
Overall

Coverage Mean Coverage SD CI

NSGA-II + MG (Sapienz) 2.63 1.54 19.07 11.43 [15.05, 23.17]
Random Search + MG 3.47 2.15 18.90 11.56 [14.87, 22.94]
(µ+ λ) EA 4.65 1.41 18.00 11.48 [14.00, 21.93]
NSGA-II 4.83 1.33 17.90 11.65 [13.72, 22.00]
Standard GA 5.12 1.32 17.63 11.51 [13.59, 21.67]
Steady State GA 5.73 1.68 17.60 11.40 [13.70, 21.57]
Random Search 5.75 1.82 17.37 11.48 [13.37, 21.37]
Monotonic GA 5.92 1.52 17.50 11.53 [13.42, 21.56]
(µ, λ) EA 6.90 1.67 16.67 11.43 [12.63, 20.71]

TABLE 13 Summary of crash detection results for Study “B”: Overall number of crashes, standard deviation and the rank of each algorithm based
on their average performance, which is statistically significant according to the Friedman test (p-value is < 0.0001). For averaged crashes values
we also report confidence intervals (CI) using bootstrapping at 95% significance level.

Algorithm Ranking Mean Ranking SD
Overall

Crashes Mean Crashes SD CI

Random Search + MG 4.13 1.61 0.27 0.52 [0.08, 0.46]
Random Search 4.65 1.09 0.13 0.35 [0.01, 0.25]
NSGA-II 4.95 0.74 0.07 0.25 [-0.02, 0.16]
NSGA-II + MG (Sapienz) 5.10 0.55 0.03 0.18 [-0.03, 0.10]
(µ+ λ) EA 5.23 0.50 0.00 0.00 [0.00, 0.00]
(µ, λ) EA 5.23 0.50 0.00 0.00 [0.00, 0.00]
Monotonic GA 5.23 0.50 0.00 0.00 [0.00, 0.00]
Standard GA 5.23 0.50 0.00 0.00 [0.00, 0.00]
Steady State GA 5.23 0.50 0.00 0.00 [0.00, 0.00]

To answer this question, we conducted a similar statistical analysis to the one presented for Study “A”. Since we only have one repetition for each
combination of closed-source subject and algorithm, we can not perform a pairwise tournament between algorithms. I.e., there is not enough data-
points to perform a Wilcoxon-Mann-Whitney U-test between two algorithms for a given subject. Nevertheless, we can still perform a Friedman
test, compute its ranking and perform the post-hoc Conover’s test. With these statistical tests, we can conclude whether there is any difference
in effectiveness among the algorithms considered.

Tables 12 and 13 summarize the results of the Friedman test in terms of coverage achieved and number of unique crashes detected, respectively.
Figure 5 shows visually the overall method coverage achieved by each algorithm. As can be seen, the overall mean of coverage for Study “B” is
quite lower when compared to the results on Study “A” (18% vs 41%). A possible explanation of such results might be that closed-source real-world
apps are more complex than open-source ones, or that their full functionality is usually locked behind login/sign-up screens.

The p−value obtained from the Friedman test for coverage achieved is 5.78e-16 , and for number of unique crashes detected is 2.49e-06 . This
means that in both cases we can reject the null hypothesis of the Friedman test (i.e., there is at least one algorithm that differs from the rest). In
terms of coverage, this result matches the one in Study “A” (Section 4.2). However, in terms of crashes, this result deviates from the results observed
on Study “A”. Surprisingly, there is at least one algorithm that is sticking out in Study “B”, whereas in Study “A” we did not have enough statistical
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FIGURE 5Overall coverage achieved by each algorithm on Study “B”. Middle line of each boxplot marks the median, black circles represent outliers,
? symbol shows the mean, and the red line represents the mean of all coverages (18%).

TABLE 14 Results of the post hoc Conover’s test for pairwise analysis of coverage achieved on Study “B”. A p− value less than 0.05 for algorithms
X and Y means there is enough evidence to claim they are different with statistically significance.

(µ+λ) EA (µ, λ) EA Monotonic
GA

NSGA-II NSGA-
II + MG
(Sapienz)

Random
Search

Random
Search +
MG

Standard
GA

(µ, λ) EA < 0.05 - - - - - - -
Monotonic GA < 0.05 < 0.05 - - - - - -
NSGA-II 1.000 < 0.05 < 0.05 - - - - -
NSGA-II + MG (Sapienz) < 0.05 < 0.05 < 0.05 < 0.05 - - - -
Random Search < 0.05 < 0.05 1.000 < 0.05 < 0.05 - - -
Random Search + MG < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 - -
Standard GA 0.376 < 0.05 < 0.05 1.000 < 0.05 0.094 < 0.05 -
Steady State GA < 0.05 < 0.05 1.000 < 0.05 < 0.05 1.000 < 0.05 0.099

significance to state any difference. Nevertheless, the overall number of crashes found in Study “B” is smaller than the overall number of crashes
in Study “A”. This is somehow expected since popular closed-source apps are more robust and mature than open-source apps used for Study “A”.

Regarding RQ1, in both studies (i.e., “A” and “B”) we observe similar behaviour. NSGA-II with motif genes (i.e., Sapienz) is above NSGA-II in the
Friedman ranking (Table 12), and the same happens when looking at Random Search withmotif genes against Random Search. In terms of statistical
significance, Table 14 shows there is enough statistical evidence to hold that there is a difference between each algorithm on both pairs. In other
words, algorithms that include motif genes have greater coverage than their counterparts without motif genes, and this difference is statistically
significant.

Study “B” take on RQ1: Motif genes have a significant impact on Sapienz coverage. In fact, both NSGA-II and Random Search improve their
coverage when test cases include motif genes.

For RQ2, our conclusions on Study “B” are similar to Study “A”. From the data collected on Study “A”, we have previously concluded that NSGA-II
has a marginal impact on Sapienz coverage. In Study “A”, NSGA-II was better than the other EAs but at the same time Random Search was at least
as good as NSGA-II. Now, in Study “B”, the results are inverted. On one hand, NSGA-II seems to be statistically better than Random Search, with
or without motif genes. On the other hand, not only did (µ + λ) EA achieved a higher position than NSGA-II in the Friedman ranking (Table 12),
but also there is not enough statistical evidence to claim that they are different. Moreover, Standard GA, which ranked below NSGA-II, is not
statistically different either.
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TABLE 15 Results of the post hoc Conover’s test for pairwise analysis of number of crashes achieved on Study “B”. A p− value less than 0.05 for
algorithms X and Y means there is enough evidence to claim they are different with statistically significance.

(µ+λ) EA (µ, λ) EA Monotonic
GA

NSGA-II NSGA-
II + MG
(Sapienz)

Random
Search

Random
Search +
MG

Standard
GA

(µ, λ) EA 1.000 - - - - - - -
Monotonic GA 1.000 1.000 - - - - - -
NSGA-II 0.450 0.450 0.450 - - - - -
NSGA-II + MG (Sapienz) 1.000 1.000 1.000 1.000 - - - -
Random Search < 0.05 < 0.05 < 0.05 0.328 < 0.05 - - -
Random Search + MG < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 - -
Standard GA 1.000 1.000 1.000 0.450 1.000 < 0.05 < 0.05 -
Steady State GA 1.000 1.000 1.000 0.450 1.000 < 0.05 < 0.05 1.000

Study “B” take on RQ2: NSGA-II EA has a marginal impact on Sapienz coverage. Even though this algorithm seems to improve the coverage
when compared to Random Search, it is not statistically different to some of the other EAs (i.e., (µ+ λ) EA and Standard GA).

Regarding RQ3, the answer for Study “A” and Study “B” are different. Although Random Search with motif genes is above Random Search in
the Friedman ranking (Table 13), the same does not happen for NSGA-II: the version without motif genes comes first in the ranking. In terms of
statistical significance, Table 15 shows there is enough statistical evidence to hold that there is a difference only between Random Search with and
without motif genes. The same can not be said of NSGA-II vs. NSGA-II with motif genes: they seem to be statistically the same.

Study “B” take onRQ3: Motif genes have amarginal or none impact on Sapienz crash detection. Only RandomSearch improves its crash detection
when test cases include motif genes. The same does not happen for NSGA-II.

In regards to RQ4, Study “B” has a similar result than Study “A”. It is worth noticing that all single-objective EAs failed to detect any crash during
execution. In that sense, NSGA-II and Random Search not only are above the rest of the EAs in the Friedman ranking (Table 13), they also managed
to detect at least some crashes. In terms of statistical significance, Table 15 shows that there is only a statistical difference between Random Search
and NSGA-II when they have motif genes. Namely, NSGA-II is not statistically different than Random Search. What is more, NSGA-II is also not
statistically different than the the other EAs.

Study “B” take on RQ4: NSGA-II evolutionary algorithm has a marginal or none impact on Sapienz crash detection. Although, NSGA-II managed
to detect some crashes, it is not statistically different than the the other evolutionary algorithms. Also, Random Search is at least as good as NSGA-II.

In summary, for Study “B”, as in Study “A”, motif genes still help to achieve a higher coverage. Additionally, Random Search with motif genes
keeps being at least as good as NSGA-II with motif genes in terms of coverage and crash detection. The main change arises from the fact that
NSGA-II is not statistically better than other EAs in Study “B” when we analyze the coverage achieved. It is also less clear that motif genes help
to detect a larger number of unique crashes. We associate this slight difference in the results related to crash detection to the fact that Study “B”
uses real-world closed-source Android apps that might have less (or more difficult to find) crashes.

Result 5. RQ5: The results of RQs 1-2 are mostly maintained.Motif genes still have a significant impact on Sapienz coverage. Nevertheless, NSGA-
II might not be as much better than other EAs, as we believed in RQ2. The results of RQs 3-4 have some slight changes due to the difficulty of
finding crashes on popular closed-source apps. From these results, it is not so clear that motif genes help detect more crashes.

4.5 Threats to Validity:
Threats to internal validity might result from how the empirical study was carried out. Since all the studied algorithms are affected by non-
determinism, for Study “A” we ran 30 repetitions of each experiment with different random seeds and followed rigorous statistical procedures to
evaluate the results. To avoid possible confounding factors when comparing different algorithms, they were all implemented on the same tool.
Since parameter tuning can affect the performance of algorithms, we used the same default values for all parameters across experimentation.
These values were chosen based on the paper presenting Sapienz 5. We used roulette selection as a selection function for the single-objective
EAs. Although the rank selection function is preferred to avoid premature convergence 29, the average number of generations performed by the
single-objective EAs in our study was 30, which mitigates this possible threat.
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Another possible threat to internal validity might come from the fact that we used for our experiments a version of Sapienz that might be
different from the one that is currently under development at the industrial setting (i.e., Facebook). We chose to use that version (although marked
as “out-of-date and no longer supported” by their authors) because it is nevertheless the latest publicly available version used for evaluation by
Mao et al. 5.

We measured the success of each algorithm in terms of statement or method coverage. While higher coverage is a desirable goal for test
generation, it is only a proxy for the more important goal of fault detection. Therefore, there is a threat to construct validity caused by how we
determine which algorithm is better. In this article we extended previous work 14 by reporting how many crashes each algorithm is able to detect.
Nonetheless, we believe that this test adequacy criterion is still a reasonable indicator of the effectiveness of different search-based algorithms.

Threats to external validity come from the fact that, due to the very large number of experiments, we only used 8 subjects as case studies
for Study “A”, which still took a long time even when using a cluster of computers. To avoid selection bias, we explicitly decided to include only
those apps that have been previously used in a statistical analysis of Sapienz (i.e., Study #2 in Mao et al. 5). For Study “A”, instead of including
new evaluation subjects, we opted to favour a larger number of repetitions (30 per combination of subject and algorithm) to gain better statistical
significance.

In this article we also extended previous work 14 by adding a new study (specifically, Study “B”) using popular real-world closed-source Android
apps taken directly from the Google Play Store as subjects. By doing this, we aimed to evaluate how results observed on open-source apps compare
to real-world closed-source Android apps that are more representative of real industry applications. It is important to note that while we would
like to have hundreds of subjects, as is the case in some empirical studies for Java unit test generation (e.g., Shamshiri et al. 13, Campos et al. 33), the
execution times of Android test evaluation makes it very time consuming, and hence expensive. As a point of comparison, Shamshiri et al. 13 and
Campos et al. 33 use 978 and 346 Java subjects each but their allocated time-budget for each run is only of 2 and 1 minute respectively, whereas
our time-budget is 2 hours. Still, another selection of subjects might result in different conclusions.

For the selection of algorithms, we considered the algorithms studied in 18. Some of the multi-objective algorithms (e.g., MOSA and DynaMOSA)
had to be excluded from the study since they were not designed to work exclusively with the statement coverage provided by EMMA. Although
we included one multi-objective algorithm (i.e., NSGA-II), including further multi-objective algorithms might also result in different conclusions. In
future work, we plan to compare the mentioned algorithms as well as other ones such as SPEA-2 36, NSGA-III 37 and MIO 38.

5 RELATEDWORK

Sell et al. 10, also present a study comparing different algorithms for Android test generation, but these algorithms are evaluated on the testing tool
MATE 11. As we have stated before, MATE uses a widget-based representation of individuals, while Sapienz does not. This means that evolutionary
operators such as crossover and mutation are different between both tools, and might influence results obtained. What is more, some classic
genetic and evolutionary algorithms in our study are not included in the work by Sell et al. 10, namely: Monotonic GA, Steady-State GA, (µ + λ)

EA, (µ, λ) EA. Finally, the work by Sell et al. 10 uses mainly test cases instead of test suites and does not study the effect of motif genes.
Vogel et al. 39 conduct a fitness landscape analysis of Sapienz using 5 apps and 5 repetitions. In their analysis, they observe a lack of diversity of

the evolved test suites and stagnation of the search after 25 generations. They then propose Sapienz div , an extension of Sapienz that integrates
diversity-promotingmechanisms. This new algorithm is evaluated against the original version in 34 appswith 30 repetitions. The evaluation showed
that Sapienz div is capable of achieving better or similar results than Sapienz in terms of coverage and crash detection. However, Sapienz div tends
to produce longer test sequences and has a significant runtime overhead compared to the original algorithm.

Pilgun et al. 40 introduce a new tool called ACVTool (Android Code coVerage Tool) for instrumenting and measuring code coverage of closed-
source apps at class, method and instruction level. They demonstrate the practical value of ACVTool by integrating it with Sapienz and conducting
a large-scale experiment where they compare different coverage tools (JaCoCo & ELLA) and granularities (Activity, method, instrumentation and
no-coverage at all). In this study, they evaluated the ACVTool prototype on a total of 832 closed-source apps from the Google Play Store sample of
the AndroZoo dataset 41, and 446 open-source apps from the F-Droid repository. They report that ACVTool managed to successfully instrument
96.9% of the apps in their experiments. Besides, their findings suggest that even when performing several repetitions, a single coverage metric is
not able to find all crashes that were detected by other metrics. Therefore, no coverage granularities clearly outperforms the others in this aspect.

Guo et al. 42 perform a qualitative study of the activity, method and line coverage reported byMonkey 7 and Stoat 43 on 70 open-source Android
apps (one repetition each). They report that the unexplored code is mainly due to lack of dependency knowledge on the required events and the
widgets state of the app (i.e., which actions cause a screen transition and what is the specific widget state necessary to achieve the transition). In
the same work, they propose Gesda, a tool that leverages static dependency analysis to construct a GUI page transition model that captures the
widgets with callbacks in a screen and the widgets whose state influence a callback. They evaluate this tool on the same 70 apps and show that it
can outperform both Monkey and Stoat.
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Choudhary et al. 4 compare several test generation tools for Android on a considerable number of open source applications. The tools considered
in their study are: Monkey 7 and Dynodroid 6, EvoDroid 44, GUIRipper 45, PUMA 46,A3E-Depth-first 47, SwiftHand 48, JPF-Android 49, and ACTEve 50.
Although it is an impressive amount of empirical work they do not focus on the specific contributions of the underlying algorithm used by each of
the techniques.

Wang et al. 31 also compare several state-of-the-art techniques on industrial applications. The tools evaluated in their study are: Monkey 7,
WCTester 51,52, Sapienz, Stoat 43, DroidBot 53 andA3E-Depth-first. The study does not achieve statistical confidence: they only use a few repetitions
to compensate for the random nature of algorithms used by the tools.

Campos et al. 33 conducted an empirical study comparing multiple evolutionary algorithms (including some multi-objective) and two random
approaches for Java unit test generation. The study was applied to a selection of non-trivial open-source classes. They show that the choice of
algorithm can have a substantial influence on the performance of Whole Test Suite optimisation. Panichella et al. 54 also performed an empirical
study with different evolutionary algorithms for Java unit test generation and confirmed several of the findings in Campos et al. 33. Arcuri et al. 29

conduct an extensive study on parameter tuning for search-based algorithms. The results are statistically analysed in the context of test data
generation for Java programs using the EvoSuite tool. Their results show that parameter tuning does have an impact on the performance of a search
algorithm. Nevertheless, they also show that is it not easy to find good settings that significantly outperform the “default” values suggested in the
literature. Our work also analyses search-based evolutionary and random algorithms but in the context of Android apps, paying special attention
to the effect of using motif genes.

6 CONCLUSIONS

In this work, we aimed to deepen into how the main features of Sapienz (namely, the NSGA-II algorithm and the representation of individuals using
motif genes) impact over effectiveness by conducting an extensive empirical study using both experimental subjects previously used in the related
literature and popular real-world closed-source subjects taken from the Google Play Store.

Our studies show that, for the case of Android test generation and in terms of coverage, the multi-objective NSGA-II evolutionary algorithm
does not have a clear improvement over the other algorithms. In Study “A”, NSGA-II is not distinguishable with statistical confidence from Random
Search whereas in Study “B” it has a similar performance to other evolutionary algorithms. These results cast doubts about the actual effectiveness
of the NSGA-II algorithm for Android test generation. In terms of the impact ofmotif genes, our experimental results provide evidence showing that
NSGA-II and Random Search performed statistically better whenmotif genes were included. Both findings suggest that the Sapienz’s improvement
on coverage is more attributable to adding motif genes rather than to the use of a particular choice of multi-objective evolutionary algorithm.
Therefore, intra-tool comparisons (as the ones performed in this article and in Sell et al. 10) should be preferable over cross-tool comparisons (as
the one performed by Mao et. al. 5) whenever possible. In other words, different techniques should be compared using the same tool, aiming to
avoid conflating factors behind changes in test suite effectiveness.

In terms of crash detection, surprisingly, we observe no significant difference among the studied algorithms, whether they include or not amotif
gene representation. However, we observe that the number of detected faults in the subjects is rather small which might hinder the analysis of
each tool capability.
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