
On the feasibility and challenges of synthesizing executable

Espresso tests

Iván Arcuschin
FCEyN-UBA/ICC-CONICET

Argentina
iarcuschin@dc.uba.ar

Christian Ciccaroni
FCEyN-UBA
Argentina

cciccaroni@gmail.com

Juan Pablo Galeotti
FCEyN-UBA/ICC-CONICET

Argentina
jgaleotti@dc.uba.ar

José Miguel Rojas
University of Leicester

UK
j.rojas@leicester.ac.uk

ABSTRACT

Several tools have been proposed to automatically test Android
applications, achieving outstanding results in terms of both code
coverage and crash discovery. While useful for crash reproduction
and bug-fixing, these tools usually do not present the generated
interactions in a format that motivates developers to read and
modify such tests later on. This hinders the ability of developers to
add those tests to their existing test suites, or adapt them to new
scenarios – common practices in modern software development
where tests are maintained and evolve alongside production code.

In this work we present an empirical study on the challenges of
automatically synthesizing Espresso test suites from sequences of
interactions over widgets. We build on top of the MATE testing tool
and implement a prototype that enables this study. The prototype
is then evaluated on 12 open-source Android apps, followed by
an analysis and discussion of challenges and limitations. We also
include feedback from developers of open-source projects and an
industrial app.

Our empirical study shows that the creation of Espresso tests is
difficult, mostly due to the lack of unique properties to unambigu-
ously identify specific widgets in the UI. This problem is aggravated
in some cases by the incomplete or ambiguous definition of GUI
components and layouts. It also points out that further research is
needed to find ways to improve the testability of Android apps ei-
ther manually or automatically. Nonetheless, the feedback received
indicates that the synthesized Espresso tests are still useful for
projects with few or no test cases, serving as a starting point for
creating new ones.

KEYWORDS

Android test generation, Espresso tests, widget-based test genera-
tors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9286-0/22/05. . . $15.00
https://doi.org/10.1145/3524481.3527234

ACM Reference Format:

Iván Arcuschin, Christian Ciccaroni, Juan Pablo Galeotti, and José Miguel
Rojas. 2022. On the feasibility and challenges of synthesizing executable
Espresso tests. In IEEE/ACM 3rd International Conference on Automation of

Software Test (AST ’22), May 17–18, 2022, Pittsburgh, PA, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3524481.3527234

1 INTRODUCTION

As the use of mobile devices increases, the demand for mobile ap-
plications (known as apps) increases as well. Despite their growing
popularity, apps tend to contain defects which can ultimately man-
ifest as failures (or crashes) to end-users. Akin to other software
domains, testing mobile apps allows developers to attain minimum
quality thresholds for their applications. This process typically in-
volves manual interaction with these apps under test and writing
test cases for them. Developers write test cases not only to find
faults but also to ensure that new features behave as expected and
that changes made to the app do not break existing functionality
(i.e., do not contain regressions). However effective, testing remains
a time-consuming, error-prone, and costly task [33, 41].

Espresso [3] is a testing framework that provides an API to help
developers write concise, reliable, and human-readable Android
UI tests. Espresso is the only UI testing framework with substantial
adoption amongst app developers [24], owing its popularity to the
fact that it is part of the Android Software Development Kit (SDK)
and that it provides mechanisms to prevent flakiness and to simplify
the creation and maintenance of tests.

Multiple automated tools have been proposed in recent years for
testing Android apps and improve their quality [21, 34, 44, 47, 48].
Nevertheless, just a handful of those tools target the Espresso
format. What is worse, not all of these tools generate test cases in
an executable and human-readable format. Most of them use the
outdated Robotium [6] framework.

Therefore, many of those tools for automatically testing An-
droid apps do not yield their test cases in a format that motivates
developers to read and modify such tests later on. Thus, their adop-
tion by developers who want to preserve valuable tests and re-run
them periodically, e.g., in continuous integration, is hampered. De-
velopers find themselves comfortable when writing test cases in
the Espresso format [24]. We argue that generating test cases in
Espresso would enable developers to preserve the generated tests
in their test codebases, refactor them if needed, or reuse them as
inspiration or starting points to augment their test suites.

https://doi.org/10.1145/3524481.3527234
https://doi.org/10.1145/3524481.3527234

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Iván Arcuschin, Christian Ciccaroni, Juan Pablo Galeotti, and José Miguel Rojas

In this work, we explore the feasibility of leveraging or extending
existing tools as opposed to developing new ones from scratch. We
present an empirical study on the challenges of automatically gen-
erating reproducible and human-readable Espresso test suites from
sequences of interactions over widgets. For this purpose, we extend
the MATE [27] testing tool to automatically translate sequences
of widget actions into executable Espresso tests. This extension
consists of two parts. First, we refactored MATE to output the
description of the sequences of widget actions in JSON format. Sec-
ond, we implemented an Espresso code synthesizer to translate
this JSON document into readable and reproducible Espresso tests
that match the original behavior as faithfully as possible.

The contributions of this article are:
• An extension to the MATE [27] widget-based testing tool to
automatically synthesize Espresso tests.
• An empirical study focused on the correctness of the synthe-
sized Espresso test cases. This includes a large quantitative
and qualitative analysis to assert that the intended semantics
of the original sequences are preserved.
• An analysis and discussion of the challenges and limitations
of automatically generating Espresso tests from widget-
based test generators. In order to understand, the usefulness
of tools such as the one proposed for developers and the
Android community, we also present the feedback collected
from pull requests sent to open-source projects and from a
questionnaire answered by developers of an industrial app.

Our empirical study yields the following insights:
• The creation of Espresso tests is difficult, mostly due to
the lack of unique properties to unambiguously identify
specific widgets in the UI. This problem is aggravated in
some cases by the incomplete or ambiguous definition of
GUI components and layouts. This points out that further
research is needed to find ways to improve the testability of
Android apps either manually or automatically.
• It is important that the test generation tool used to perform
the exploration executes the actions on views that are reach-
able for Espresso. Furthermore, in order to alleviate the
problem of identifying widgets in the UI, the information
provided by the testing tool should be plentiful and accurate.
• Synthesized Espresso tests are useful for projects with few
or no test cases and they can serve as a starting point for
creating new test cases. They also provide a quick and simple
way to increase the project’s coverage. Nevertheless, these
synthesized Espresso tests should include a clear description
of the intent of each test case. Also, whenever possible, test
cases should target a specific user scenario.

The remainder of this article is organized as follows: Section 2
overviews existing frameworks and tools for testing Android apps,
with special emphasis on tools that generate Espresso tests. Sec-
tion 3 presents the necessary background. Section 4 shows the
implementation details of the prototype used for the empirical
study. Section 5 presents the empirical study and discusses results.
Section 6 presents an analysis and discussion of the challenges
and limitations of synthesizing Espresso tests, as well as lessons
learned during this work. Finally, Section 7 concludes the paper
and outlines future work.

2 RELATEDWORK

Several testing frameworks have been created to help Android de-
velopers write test cases and automate test execution. JUnit is a very
popular framework for Java unit testing. In Android projects, pure
JUnit test cases can be used only to exercise classes that have no
interaction with the Android framework. In order to test the GUI
components of an app (e.g., Activities, Widgets) an instrumentation-
based framework is typically needed. These frameworks use An-
droid Instrumentation [9] to inspect and interact with the Activities
under test. Some well-known frameworks for Android GUI testing
are Robotium [6], Appium [1], Calabash [2], MonkeyRunner [4],
UIAutomator [7] and Espresso [3]. Of these frameworks, Robotium
and Calabash are deprecated and no longer maintained. Notably,
the Robolectric [5] framework allows unit testing of GUI compo-
nents in a simulated Android environment inside a JVM, without
the need of an emulator or device.

According to Cruz et al. [24], Espresso is the most used frame-
work for GUI testing, with a steady increase in adoption in recent
years. UIAutomator, Robotium, and Appium are used by very few
projects, and AndroidViewClient, Calabash, Monkeyrunner, and
PythonUIAutomator are not used at all. To understand if the An-
droid testing tools also conform to these trends, we examined 101
papers from the Android testing literature and categorized each
one by the type of output provided. The result was that only few
tools target the Espresso framework as an output format. A great
portion of them will not provide an executable output, e.g., yielding
only crash reports. Most of the tools that do output executable test
cases tend to either use a custom format (i.e., because they are using
a custom engine to run them) or the Robotium framework. The list
of the surveyed research papers can be found online [15].

Monkey [18], regarded as the state-of-practice, is a widely-used
random-based testing tool for Android apps. It is provided with the
Android SDK, hence its popularity among Android developers,
but it only reports uncaught runtime exceptions during a random
exploration. Moreover, Monkey does not allow users to replay
sequences of events (i.e., test cases), which can be critical for under-
standing the cause of a crash. Similarly, other tools for automatically
testing Android apps do not generate tests in a human-readable
and reproducible format. For example, Sapienz [37] outputs a se-
quence of atomic actions intended to be used by machines (i.e.,
for re-executing failing cases), MATE [27] generates an accessi-
bility report, while Dynodroid [36] and Stoat [43] only yield
crash reports. Even recent tools such as Ape [30], Humanoid [35],
TimeMachine [26], Q-testing [39] and ComboDroid [46] only
yield coverage and crash reports.

Rohella et al. [40] brieflymention that their tool outputs Espresso
tests, without providing any further details. COBWEB [32] uses
Robolectric as an internal representation of tests and transforms
them into Espresso tests at the end. They do not provide specifics
on how this transformation is done. RacerDroid [45] modifies the
Espresso framework to control event dispatching. It is unclear
whether Espresso test cases generated by RacerDroid can be run
outside the modified framework.

Espresso Test Recorder (ETR) [38] provides developers with a
record and replay tool that eases the task of writing Android tests
in Espresso format. However, ETR is not an automatic approach,

On the feasibility and challenges of synthesizing executable Espresso tests AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

since the developer is in charge of providing the actual UI actions
to be performed in the test. Hence, the use of ETR in practice is
constrained by the amount of time and effort developers are willing
to invest in interacting with the tool to record tests. Although ETR
can listen for UI interactions that may be produced automatically
(e.g., by a tool), it can only be started and commanded from the
Android Studio IDE’s UI. In other words, ETR can not be run
as a standalone tool so integration with other tools for automated
generation of Android inputs is restricted.

Barista [28] is a record and replay tool similar to ETR that pro-
vides better support for defining oracles and improved UI matchers
in test cases. While their empirical study is mostly focused on com-
paring Barista against other record and replay tools such as ETR,
ours is focused on assessing whether an existing automatic test
generation tool can be extended to produce Espresso tests that
preserve the original semantics achieved during exploration. This
distinction is important since the sequences of interactions gen-
erated manually by developers for a record and replay tool might
differ from the ones generated automatically by a tool. Nevertheless,
some of the challenges presented in Barista’s work [28] are similar
to the ones presented in this article. Thus, we leverage the solutions
and heuristics described by them to build our prototype.

DiffDroid [29] is a tool for automatically finding cross-platform
inconsistencies in Android apps. It extends Monkey to generate
sequences of interactions and encode them into a custom-defined
trace, while simultaneously saving the UI hierarchies of the win-
dows visited during exploration. Its implementation shows that it is
also possible to extend automatic test generation tools that are not
widget-based to synthesize Espresso tests. Still, DiffDroid’s empiri-
cal study is focused on assessing if the tool detects cross-platform
inconsistencies with a limited number of false positives. They do
not study whether the synthesized Espresso tests are semantically
equivalent or not to the original sequences produced by Monkey.

AppTestMigrator [20] is a tool formigrating test cases in Espresso
format between apps of the same category (e.g., banking apps). It
leverages commonalities between UIs to automatically migrate ex-
isting tests from one app to the other. Although AppTestMigrator’s
empirical study provides insights into how accurate the tool is in
migrating tests, these test cases were written by developers and, as
mentioned before, might differ from automatically generated ones.

Coppola et al. [22] present an approach for translating test scripts
from visual-based tools into Espresso test cases. The motivation
of their work presents similarities with ours but the approaches
are different. For example, their implementation requires the app
under test to be instrumented to complement the logs from the
visual-based tool. Their experimental evaluation comprises 60 tests
created manually by the authors (we use existing widget-based test
generators as input) and does not address whether the semantics of
the initial visual-based test scripts is preserved (cf. RQ 2). Overall,
however, their work aligns with ours in recognizing the need to
generate re-executable Espresso tests.

It is worth mentioning that some of the challenges and limi-
tations presented in this article have also been mentioned in the
related work [22, 23, 28, 29, 38]. Nevertheless, in most of these
works the test cases are written manually by a human participant
of the experiment or an outside developer (e.g., projects crawled
from GitHub). In the few using automatically generated test cases,

(a) Motivating Android UI example. The user swipes up to reveal

the rest of the list, and then clicks the “Next” button to reveal the

second page in the form.

(b) XML example for “Pepperoni” row in Figure 1a.

Figure 1: Android UI example and associated XML code.

the challenges and limitations of synthesizing Espresso tests are
not fully presented and analyzed. In contrast, this article provides
an empirical study evaluating the feasibility and challenges of syn-
thesizing Espresso tests from widget-based test cases automatically
generated by a state-of-the-art-tool. We then perform a quantitative
and qualitative analysis of the results. Such systematic analysis not
only presents a detailed explanation of the challenges and limita-
tions, but it also shows how pervasive each of these issues are.

3 BACKGROUND

3.1 Android UI

Android applications are composed of Activities. Each Activity
defines a window with which the user can interact. An Activity
consists of a UI and code to respond to UI-specific actions (e.g.,
clicking a button, typing in a text field, etc.) and/or system-wide
events (e.g., low battery, lack of network connectivity, etc.).

The Activity’s UI can be defined programmatically or via XML

files (as shown in Figure 1b). In both cases, the developer must
provide a View Hierarchy that the operating system will parse and
use to render the screen. A View Hierarchy is a tree with a root
View positioned at the top and child Views positioned as branches.
A View, the basic building block for these hierarchies, occupies
a rectangular area on the screen and is responsible for drawing
and event handling. The View class is the base class for Widgets,
which are used to create interactive UI components (e.g., buttons,
text fields, etc.). The ViewGroup subclass is the base class for lay-
outs, which are invisible containers that hold other Views (or other
ViewGroups) and define their layout properties. Figure 1 shows an
example of a UI and part of its hierarchy. A user interacts with a

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Iván Arcuschin, Christian Ciccaroni, Juan Pablo Galeotti, and José Miguel Rojas

(a) Example of JSON action descriptor.

(b) Example of an automatically generated Espresso test.

Figure 2: Example of the JSON input (2a) and the generated

Espresso test (2b).

mobile application by performing actions on the visible widgets. For
example, clicking the “Add item” ImageButton in the rows of Fig-
ure 1a. Among others, some standard actions that can be performed
on widgets are click, long click and scrolling.

3.2 The Espresso Testing Framework

Espresso [3] is a testing framework for writing Android UI tests.
It was released in October 2013, and since its 2.0 release it is part
of the Android Support Repository and officially supported by
the Android ecosystem. This, coupled with the fact that it enables
developers to write concise and reliable UI tests, has made the
framework very popular among developers [24].

In a nutshell, Espresso provides an API that lets developers
emulate user interactions with the app under test programmatically.
This API is divided into three parts. View Matchers, to find views
in the current view hierarchy (e.g., with a certain id, with a given
caption, etc). View Actions, to perform actions on the views (e.g.,
clicking, long clicking, clearing a text, etc). View Assertions, to assert
the state of a view (e.g., whether a view is displayed or not, whether
it is above another view, etc). The framework also allows developers
to select which activity should be run at the beginning of each
test using a @Rule annotation. Furthermore, Espresso improves
test case reliability by performing pending actions only when the
application under test is idle.

Figure 2b shows an example of an Espresso test. The test selects
a view with a “button” id and parent with “activity_layout” id.
Then, it performs a click action on the matched view. If the view
was not found, or several views match the selection criteria, the
test execution will raise an exception.

Figure 3: Architecture of the prototype.

3.3 Android Test Generation

Since the introduction of Monkey in the Android SDK, several
tools have been proposed to automatically test Android mobile
apps [21, 34, 44, 47, 48]. Dynodroid [36] aims to overcome Mon-
key’s limitations by extending pure random testing with feedback-
directed biases. Sapienz [37] applies search-based testing. It has
been deployed at Facebook [8] where it is used to generate crash-
reproducing test cases [19]. Stoat [43] applies model-based evolu-
tionary testing, using dynamic exploration to build and evolve a
probabilistic UI state-transition model from which to gather test
cases. MATE [27] is a tool for generating sequences of interactions
for Android, based on information from the UI. Although origi-
nally designed to find accessibility problems (e.g., a missing content
description for a visible component), it has recently been extended
to study different evolutionary algorithms for test generation [42].

The aforementioned tools internally represent the interactions
with the mobile app under test using different formats. For ex-
ample, Sapienz represents interactions as sequences of atomic ac-

tions (click, long click, etc.) over specific ⟨x ,y⟩ screen coordinates.
However, many of them use the UIAutomator [7] tool for finding
available UI events and executing them, and thus they represent
interactions as sequences of actions over widgets on the UI (called
widget actions). Some of the tools in this group are: Stoat, Dyn-
odroid, MATE, Ape [30], ComboDroid [46], TimeMachine [26]
and Q-testing [39]. We refer to them as widget-based Android
testing tools.

4 SYNTHESIZING ESPRESSO TESTS

The overall architecture of our prototype is depicted in Figure 3. We
considered MATE, Dynodroid and Stoat to use as the underlying
test case generator for the empirical study since all of them are
widget-based state-of-the-art tools. We chose MATE [27] because it
is the most modern of the three tools, it is in active development, we
had previous experience using it, and, more importantly, because
it had already been applied to a curated list of apps containing
Espresso tests. We extended MATE in order to produce the JSON
file shown in Figure 3. This document describes the sequences of
widget actions that will constitute each Espresso test case. Figure 2a
shows an example of JSON output. For each widget action, the type
of action is collected, as well as any extra parameter needed (e.g.,
the text when typing in a text field). Each widget action also points

On the feasibility and challenges of synthesizing executable Espresso tests AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

Algorithm 1: Translating sequences of widget actions into
an Espresso test suite
Input : JSON file f
Output :Test suite S

1 SuiteE ← {}
2 WActionSeqs← ParseWidgetActionSeqences(f)
3 for WActionSeq ∈ WActionSeqs do

// Translate a sequence of widget actions

4 TestE ← []

5 for WAction ∈ WActionSeq do

// Translate a single widget action

6 TestCode← BuildViewMatcher(WAction)

7 TestCode.append (BuildViewAction(WAction))

8 TestE .append (TestCode)

9 if TestE is not empty do

10 SuiteE ←− SuiteE ∪ {TestE }

11 return SuiteE

to the targeted widget, its parents, children and specific attributes
if there were any (e.g., displayed text). A full description of the
JSON schema (including the action types provided by MATE) can
be found in a public GitHub repository [10].

Algorithm 1 outlines how the “Espresso code synthesizer” module
translates sequences of widget actions into an Espresso test suite.
First, the JSON is parsed to obtain the sequences of widget actions
(line 2). Then, an Espresso test suite is built by translating each
sequence of widget actions into a (ideally) semantic-preserving
Espresso call to themethod perform. That is, for eachwidget action
(e.g., the one shown in Figure 2a), the code synthesizer produces the
corresponding Espresso statement to trigger the same action using
the Espresso API. This is achieved by consecutively synthesizing
the code for the appropriate View Matcher to select the widget and
the corresponding perform operation on the selected widget (lines
6-8). For example, if the widget action is a click, then the appropriate
perform operation would be perform(click()). Figure 2b shows
an example where the onView() invocation selects the targeted
widget on which perform(click()) is executed. Notice that the
algorithm does not append any View Assertion. The implementation
does not add such assertions since they are not strictly necessary to
reproduce the behavior of the sequence of widget actions. Finally,
the resulting Espresso test suite is written as a single Java file to
the test directory specified by the developer.

We faced several challenges during the implementation of the
prototype. Tomitigate them, we relied on the heuristics proposed by
the official Espresso documentation and the state-of-the-art litera-
ture. Specifically, we used the heuristics proposed in related work
to mitigate the problem of widget disambiguation (i.e. [28, 29, 38]).
This problem arises because Espresso’s onView() method, used to
select the target widget of an action, takes a View Matcher that is ex-
pected to match a unique widget within the current view hierarchy.
Often, the desired widget has a unique resource identifier which can
be used to unequivocally target it (i.e., using the Espresso withId
matcher). However, there aremany legitimate cases in which the tar-
get widget may not have a resource identifier or the identifier may
not be unique. In the latter scenario, an attempt to use the withId

Table 1: Subjects used in empirical study. Last activity was in-
spected at 2020-06-10.

Subject Last activity #Android Activities #Tests in project

PoetAssistant 2019-10-16 7 152
Equate 2020-05-31 2 6
OneTimePad 2017-11-01 2 0
Orgzly 2020-05-12 13 460
MicroPinner 2019-08-31 1 23
OCReader 2020-06-09 2 17
HomeAssistant 2018-02-07 3 3
OmniNotes 2020-06-05 5 71
Kontalk 2020-04-21 14 59
KolabNotes 2020-03-20 9 0
ShoppingList 2019-03-19 8 7
MyExpenses 2020-06-06 13 521

matcher will yield an AmbiguousViewMatcherException. As an
example, some of the heuristics applied were: using the parent’s
resource id (as shown in Figure 2b), using the children’s resource
id, and using the view’s text (or content description) if non-empty.

5 EMPIRICAL STUDY

Ideally, all synthesized Espresso tests would preserve the intended
semantics of the original widget-action sequences from which they
were generated. However, as discussed in Section 4, this may not
be always possible. The following research questions aim to reveal
how pervasive this problem is. A replication package of this study
can be found online [17].
RQ 1: Do the synthesized Espresso tests reliably replicate the coverage

achieved by widget-action sequences?

RQ 2: Do the synthesized Espresso tests reliably replicate the UI states

achieved by widget-action sequences?

RQ 3: Which are the most common causes for failure in the synthesized

Espresso tests?

5.1 Experimental setup

5.1.1 Selection of Subjects Under Test. We used as experimental
subjects the 12 open-source apps with Espresso setup collected
and used by Eler et al. [27]. These apps are adequate as subjects for
our research questions since MATE can handle them, and most of
them have recent activity. They are shown in Table 1.

5.1.2 Subjects configuration. We configured each subject accord-
ingly since most of them had several build variants (e.g., release,
debug, etc.) and product flavors defined (i.e., specifying different
features). The “Espresso code synthesizer” module automatically
detects the Espresso version configured in the subject (e.g., using
AndroidX or Android Support libraries), which prevents depen-
dency problems during execution.

5.1.3 Implementation. We made minor changes to MATE’s code in
order to use its output. In particular, we added a small code fragment
(55 LOC using the Jackson [13] library for handling JSON docu-
ments) that dumps the Java objects representing the final population
to a JSON file. We used MATE’s Random Exploration algorithm for
the generation of widget-based test cases. Random exploration is a
fairly simple algorithm which has been used in MATE for Android
test case generation before [42]. The algorithm works by continu-
ously sampling the search space until it runs out of time budget. On

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Iván Arcuschin, Christian Ciccaroni, Juan Pablo Galeotti, and José Miguel Rojas

each iteration, a completely new individual (i.e., test case) is created.
If this new individual increases the overall coverage achieved up to
that point, the individual is added to the final population. Therefore,
the final population consists of all the individuals that increased the
overall coverage during exploration. It is worth pointing out that
the experiments were fully automated and no manual intervention
was provided (e.g., logins) during MATE’s exploration.

5.1.4 Experiment Procedure. The experiments were run on a PC
with Ubuntu 18.04. The CPU was an Intel® Core™ i7-7700 @
3.60GHz × 8 cores and the RAM was 32 Gb. We used Android
Pie emulators (API 28). To account for the randomness of the cho-
sen algorithm and mitigate non-determinism, we executed each
experiment 5 times on each subject. We set a maximum time budget
of 1 hour for each execution of MATE. We conservatively doubled
the original 30 minutes time budget used by Eler et al. [27] to miti-
gate any emulator or hardware difference. No time budget was set
for the “Espresso code synthesizer” module since the translation per
se (lines 5-8 of Algorithm 1) takes only a few seconds (negligible
compared to exploration time).

5.1.5 Experiment Analysis. We obtained statement coverage for
each executed test cases using JaCoCo [14]. We manually inspected
that the coverage achieved by MATE’s exploration and the corre-
sponding Espresso tests was being correctly reported by JaCoCo.
We excluded from the JaCoCo analysis some of the classes that
might be in a subject’s APK but were not directly written by their
developers (e.g., Android libraries, auto-generated classes, etc).

For each Espresso test generated, we also collected the number
of calls to the performmethod that failed. Namely, howmany actions
in the original test cases were not properly translated to Espresso.

Furthermore, to understand if the generated test cases preserve
the same semantics as the original widget-based test sequences, we
collected screenshots during its execution. In particular, we took a
screenshot before each action and a single final screenshot at the
end of the test. By doing this, we aimed at recording any visible
difference between test executions. For comparing the screenshots,
we performed a pixel-by-pixel comparison of each image using the
compare tool from the imagemagick [11] open-source software suite.
The comparison was done with a 20% fuzz factor [12] that helps to
ignore minor differences between the two images. Then, we use the
“AE” (short for "Absolute Error") special metric to count the actual
number of pixels that were masked, at the current fuzz factor. We
deem two screenshots to be diverging if the proportion of pixels
that differ is greater than 5%. In that case, the action previous to the
screenshot is a point in the test execution were the original widget-
based test sequence and the synthesized Espresso test diverged.
Both the threshold and fuzz factor chosen were manually validated
using several examples of screenshots taken from the subjects in
the experiment. We also provide further validation in Section 5.2.2.

5.2 Results

5.2.1 RQ 1: Do the synthesized Espresso tests reliably replicate the

coverage achieved by widget-action sequences? Figure 4 shows for
each subject the overall coverage achieved by MATE and the syn-
thesized Espresso test cases. The latter achieve a similar coverage

Figure 4: Overall coverage achieved for each subject. Middle line
of each boxplot marks the median, black circles represent outliers,
⋆ symbol shows the mean, and the red line represents the mean of
all coverages (22% for the Espresso tests and 24% for MATE).

Figure 5: Overall failing actions and diverging screenshots found
while running the Espresso test cases for each subject. Middle line
of each boxplot marks the median, black circles represent outliers,
⋆ symbol shows the mean.

to MATE’s widget-action sequences. Although the differences be-
tween coverage are small, in most cases the synthesized Espresso
test cases achieved lower coverage than MATE. We conjecture that
this behavior (which is consistent across many subjects) is caused
by the fact that there is at least one failing action on each test suite
when executed. Figure 5 shows the percentage of actions that failed

On the feasibility and challenges of synthesizing executable Espresso tests AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

Table 2: Number of screenshots that were correctly or incorrectly
marked as diverging screenshots by the pixel-by-pixel comparison.

Marked status Correctly Incorrectly Total

Diverging 1257 (36.97%) 58 (1.71%) 1315 (38.68%)

Same 1618 (47.59%) 467 (13.74%) 2085 (61.32%)

Total 2875 (84.56%) 525 (15.44%) 3400

when running the synthesized Espresso tests. If we look across
subjects, we find that in total 30.19% of actions failed. Observing
each test case, we find that on average 25.25% of actions failed.

RQ 1: The synthesized Espresso tests preserve over 90% of the

widget-based exploration coverage (22% vs. 24%).

5.2.2 RQ 2: Do the synthesized Espresso tests reliably replicate the

UI states achieved by widget-action sequences? Figure 5 also shows
the percentage of diverging screenshots found while running the
synthesized Espresso tests. Given the high number of diverging
screenshots found (33.64% diverging screenshots across subjects
and 29.18% per test case on average), we decided to perform a
more detailed qualitative analysis of these screenshots, to better
understand if the pixel-by-pixel comparison was unintendedly in-
troducing errors in our results. In order to do so, we manually
inspected more than half of the screenshots recorded by the first
repetition of our experiment (3400 pairs of screenshots, precisely).
Each pair contains a screenshot taken during MATE execution
of the widget-based sequence and a screenshot taken during the
execution of its corresponding Espresso action.

Table 2 shows how many of the screenshots manually inspected
were actually diverging or not. The pixel-by-pixel comparison was
able to correctly detect the diverging status of 84.56% of the screen-
shots analyzed. Of the remaining 15.44%, 58 (1.71%) screenshots
were incorrectly marked as diverging and 467 (13.74%) were incor-
rectly marked as the same screen. This shows that, although not
perfect, the pixel-by-pixel comparison (along with the chosen fuzz
factor and diverging threshold) is able to correctly determine if two
UI states are the same or not in a significant number of cases.

In Table 3 we summarize the causes observed for the diverging
screenshots. The main cause observed is “Wrong UI State”, meaning
all screenshots that are different as a consequence of a previous
divergence in the test. For example, a failing back action at the
beginning of a test case means that the following actions in the
test will start from a different UI state than what was intended
in the original sequence. This may indicate certain fragility in
GUI tests, which is a known problem that has been studied in the
literature [23]. The next cause observed is “Off Timing” which
comprises all the divergences caused by small differences in timing
when executing the test cases, which led to some actions failing.

“MATE Exited” refers to a particular bug in MATE’s implemen-
tation that caused MATE to continue the exploration even after
having exited the subject under test. This faulty behavior produced
repeated screenshots of the emulator’s home screen and other unre-
lated apps at the end of some executions.

Table 3: Details of causes for diverging screenshots.

Cause Count (%)

Wrong UI State 1246 (72.27%)
Off Timing 216 (12.53%)
MATE Exited 129 (7.48%)
Failed Action 93 (5.39%)
Flaky Test 40 (2.32%)

TOTAL 1724

“Failed Action” represents all the screenshots that diverged be-
cause of an action failing prior to taking the screenshot. Lastly,
“Flaky Test” refers to all the screenshots that diverged due to the
test cases generated by MATE being flaky. For instance, the exe-
cution of an action that is date dependant (e.g., setting an alarm)
produces a flaky test. As another example, some subjects retrieve
information from Web services and the result changes over time
(e.g., currency exchange rates). It is worth noticing that in this case
the MATE sequences themselves can not be replicated, since the
flakiness is caused by the behavior of the subject under test.

RQ 2: The synthesized Espresso tests achieve similar UI states in

about two-thirds of the cases. In the ones that differ, it is usually

caused by a failing action at the beginning of the test.

5.2.3 RQ 3: Which are the most common causes for failure in the

synthesized Espresso tests? Given the high amount of missmatching
pairs of screenshots that were caused by a previous divergence in the
test, we decided to also study the first failing action of those tests.
In total, we manually inspected 94 tests (the same ones considered
in our manual analysis of screenshots). Of those 94, 31 did not
contain any failing action. Table 4 shows the causes of the first
failing action for the remaining 63 tests. We group the causes by
which component in the whole architecture was responsible (i.e.,
which one should be changed to avoid the problem).

The “Espresso code synthesizer” module is responsible for 38.10%
of the failing actions analyzed. Among the reasons for this we can
enumerate the following. “JSON Schema” refers to all the cases
in which a failing action could be fixed by enhancing the JSON
schema with additional information that is already available in
MATE. “Swipe Difference” refers to the failing actions that occurred
by small differences in screen placement between the synthesized
Espresso tests and the original widget-based test sequences. These
changes led to some actions not being available or present in the
screen at the moment of re-execution. “Ambiguous Matcher” rep-
resents the actions that failed due to any of the heuristics in the
“Espresso code synthesizer” module for building the View Matcher.

The Espresso framework is responsible for 30.16% of the failing
actions analyzed. “View Not Displayed” refers to any action that
failed due to the target view not being displayed in the screen,
which is a common Espresso limitation. “Framework Limitation”
represents other known limitations of the Espresso framework, for
example, whenworkingwith custom views. “Subject Not Supported”
represents the actions that failed due to a specific implementation
detail in the subject.

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Iván Arcuschin, Christian Ciccaroni, Juan Pablo Galeotti, and José Miguel Rojas

Table 4: Analysis of causes and components for failing actions

Component Cause Count (%) Summary

Espresso
code synthesizer

JSON Schema 16 (25.40%)
24 (38.10%)Swipe Difference 5 (7.94%)

Ambiguous Matcher 3 (4.76%)

Espresso
framework

View Not Displayed 12 (19.05%)
19 (30.16%)Framework Limitation 6 (9.52%)

Subject Not Supported 1 (1.59%)

MATE Wrong Info 9 (14.29%) 10 (15.87%)Accessibility Service 1 (1.59%)

Subject Flakiness 10 (15.87%) 10 (15.87%)

TOTAL 63

After further inspection, we found that the errors in the category
“View Not Displayed” were being worsened by MATE’s behavior.
Specifically, MATE sometimes performs actions on views that are
not displayed on the screen (i.e., views not directly visible to the
user). A typical instance of this is a screen with a long form on it:
the views at the bottom are “visible”, but not on display. The first
screen in Figure 1a exemplifies this case: the beverage options and
“Next” button are visible in the UI but not currently displayed to
the user. This behavior of MATE collides with the way that the
default Espresso actions work, which assumes that target views
are always displayed to the user.

MATE is responsible for 15.87% of the failing actions analyzed.
“Wrong Info” refers to actions that failed due to MATE providing
erroneous information in the JSON. For instance, actions performed
by MATE on UI elements outside the app (e.g., in the top bar) break
compilation of the corresponding Espresso tests, since the resource
IDs of those views are not defined within the target app.

“Accessibility Service” represents the known limitations of the
Accessibility Service used by MATE to gather information in the
screen. Some of these limitations led to incongruencies during
the generation of Espresso tests: imprecise class name of views,
incorrectly reporting the hint of a field as text input, missing content
description properties, and providing texts with the wrong casing.

Finally, general flakiness in some subjects sums up to 15.87% of
the failing actions.

RQ 3: The most common causes for failure are: missing

information in the JSON Schema, performing actions on widgets

not displayed, erroneous information from MATE and overall

flakiness in subjects.

5.3 Threats to Validity

Threats to internal validity might result from how the empirical
study was carried out. For the selection of the algorithm, we consid-
ered the ones studied in [42]. We decided to use the best performing
algorithm in that study, i.e., Random Exploration. Since the algo-
rithm Random Exploration is affected by non-determinism, we ran
5 repetitions on each subject with different random seeds. Also, pa-
rameter tuning can affect the performance of algorithms, so we used

the same default values for all parameters across experimentation.
These values were chosen based on [42].

Threats to external validity come from the fact that we only used
12 open-source subjects as case studies. To avoid selection bias
for the open-source subjects, we explicitly decided to include only
those apps that had been previously used in the empirical study
of MATE [27], and that had already been set up to run Espresso
tests. Nevertheless, it is important to note that another selection of
subjects might result in different conclusions.

6 ANALYSIS AND DISCUSSION

In this section, we discuss the main challenges and limitations of
synthesizing Espresso tests and present the insights learned from
this study. We focus on technical challenges first and then analyze
the existing barriers that might prevent developers from adopting
a tool such as the one implemented in this article into their daily
workflow.

6.1 Challenges & Limitations

Results from the RQ 2 (Section 5.2.2) show that divergent UI states
between a widget-based action sequence and its corresponding
Espresso test are mostly caused by failing actions. The rest of the
causes had a lower impact during the study: timing issues, flaky
subjects and problems in the test generation tool.

Results from the RQ 3 (Section 5.2.3) show the causes observed
for failing actions. The main challenge detected is the difficulty to

properly indicate to the Espresso framework the view on which it

should perform an action. To do so, an Espresso test case generator
(or developer) has to correctly build a corresponding View Matcher.
Since the Espresso framework requires an action to be performed
on a unequivocally identified view, this View Matcher must be
built with great precision. Failure to do so causes the Espresso
framework to raise an exception.

View Matchers can be built using resource IDs, which are not
always unique, and many other view properties (e.g., text, children,
parents, etc.) that may help narrow down the search. Therefore,
it is of the utmost importance that the information provided by the

underlying test generation tool is plentiful and accurate. Any missing
or wrong information has a high chance of causing a failing action.

We also found that it is important that the test generation tool

performing the exploration executes the actions on views that are

reachable for Espresso. For instance, actions performed on views not
displayed to the user will not work with Espresso default actions,
and those performed on views outside the application will not work
at all. Although there are some workarounds for the former (e.g.,
implementing custom actions), these do not work for all cases.

Lastly, as mentioned before, some issues are independent of the
method chosen for synthesizing Espresso tests. Typically, subject
flakiness may lead to sequences of widget actions that are not
reproducible. Also, limitations of the Espresso framework prevent
it from working with custom views without additional efforts.

In summary, the creation of Espresso tests is difficult due to the
lack of unique properties to unambiguously identify the elements
in the layouts. This problem is aggravated in some cases by the
incomplete or ambiguous definition of GUI components and layouts.
In this regard, further research is needed to find ways to improve

On the feasibility and challenges of synthesizing executable Espresso tests AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

the testability of Android apps either manually or automatically.
We outline below the particular technical limitations faced during
the empirical study that may also be of interest to other researchers.

6.1.1 Widget disambiguation limitations. Despite the strategies
implemented to mitigate the problem of widget ambiguity, some
cases might not be possible to disambiguate:
Images with identical hierarchy but different content. This
can happen, for example, if two different images are side by side. In
this case, it is not possible to build a ViewMatcher that distinguishes
both by the content (nor does the Accessibility Service used by
MATE provide such info).
Widgets with identical hierarchy and content, but different

siblings in the hierarchy. For example, the second screen in Fig-
ure 1a shows a short list of beverage options in which each row has
the same checkbox, but all rows have different text. We might want
to target a specific checkbox (e.g., the one in the “Coke” row) but
if we only look at the parent and children hierarchy, as proposed
in our JSON schema, there is no way to distinguish one from the
other. This might be solved if we add siblings to the JSON schema,
or if we provide the whole UI hierarchy tree in the JSON.
Widgets with identical hierarchy, content and siblings. For
example, if we have duplicated rows in a list (identical including
content, as shown for the “Pepperoni” row in the first screen of
Figure 1a), then the only way to disambiguate them is by using
their position on the list, but this information is not provided by the
Accessibility Service, and is therefore not listed in MATE’s output.

6.1.2 Lack of testability transformations. The concept of testability
transformation [31] refers to any modification applied to a program
to make the testing process more effective. In that sense, the process
of automatically synthesizing Espresso tests may benefit from
custom-made testability transformations. These transformations
may help for example with the problem mentioned in the previous
subsection by assuring that all widgets have a unique resource id.
An instance of such transformation is presented by Coppola et
al. [22], but further analysis is needed to measure its effectiveness.

Another scenario in which testability transformations may be
useful is when an app blocks the main thread (i.e., the UI thread).
Since the actions executed by Espresso are also run on the main

thread, any blockage there prevents Espresso from working. Par-
ticularly, this happened in our study with the subject OneTimePad.
Although this is a limitation of Espresso, we believe that the be-
havior implemented by OneTimePad is not standard and should
not impact the broader range of apps. It is interesting to note that
MATE does work for OneTimePad, since it runs as a standalone
process in the device, and thus in a different thread.

6.1.3 Engineering limitations vs. Research challenges. So far, we
have presented all challenges and limitations together. Nonetheless,
it is useful to also separate these issues between incidental and
fundamental ones. Incidental limitations are the ones that can be
rewritten as an engineering problem. In other words, they are
limitations faced as byproducts of the chosen implementation for
the prototype or experimental setup. We identify the following:
• Ensuring that information gathered during test generation
is correct, so View Matchers are built correctly afterwards.

• Providing all the information available during test generation
to the Espresso code synthesizer.
• Finding ways to gather information on custom views, images
and lists. This issue would also need the implementation of
custom View Matchers.
• Minimizing errors due to swipe differences and timing issues
to avoid overall flakiness.

As an example, the first item mentioned above could be eased
by improving MATE in a way that it does not perform actions
outside the AUT, and that the ones inside the AUT are only on
views reachable for Espresso. Also, replacing the Accessibility
Service used in MATE for another source of UI information would
be really helpful. Fundamental challenges can be rewritten as a
research problem. Namely, special algorithms or techniques need
to be devised to find ways to solve or mitigate them. We deem the
following as such issues:
• Insufficient Android information to unambiguously identify
the elements in the UI layouts.
• Subject flakiness due to UI states that depend of external
factors (e.g., time or Web services).
• Furthermore, lack of testability transformations that can be
applied to the AUT to mitigate both issues aforementioned.

6.2 Adoption & Usefulness

To understand the usefulness and limitations of the synthesized
Espresso tests for developers, we evaluated the effectiveness of the
implemented prototype on the previously studied 12 open-source
apps plus one industrial app. We submitted synthesized Espresso
tests as Pull Requests for the open-source apps and hereby report
on their acceptance rates. Finally, we provide the prototype to an
industrial partner for its evaluation. We conducted a written inter-
view with two developers of the Android development team. We
asked these developers to outline the positive and negative aspects
of the prototype, as well as feedback to improve the usefulness of
the generated tests.

6.2.1 Open-source projects. We submitted a Pull Request with a
single test case to each project public’s code repository (e.g., in
GitHub). To avoid any possible bias, we followed a strict selection
process to decide which test to submit.

Firstly, we start by considering only those Espresso tests syn-
thesized in the first repetition of our empirical study. Secondly, if
the synthesized Espresso test case with the highest coverage for a
project increased the project’s overall coverage by 5% or more, it
was selected for submission. When no test case was able to meet
this requirement, we checked if there were Espresso tests that
covered activities missing in the coverage of the existing project’s
test suite. If that was the case, we selected the one that brought
the highest coverage increase to the project. If no test case brought
more than a 5% coverage increase nor covered any new activity, we
decided not to send a pull request.

Each pull request contained the selected test case, two auxiliary
documented Java files, external dependencies if necessary, and a
small explanation highlighting the contributions (i.e., the overall
coverage increase and the new screens covered). For the subjects
with explicit contributing guidelines, we manually reviewed the
code submitted to make sure it adhered to them.

AST ’22, May 17–18, 2022, Pittsburgh, PA, USA Iván Arcuschin, Christian Ciccaroni, Juan Pablo Galeotti, and José Miguel Rojas

Overall, we selected 8 out of 12 subjects for sending Pull Re-

quests. Of the 8 Pull Requests submitted, we received responses
with comments for half of them (ShoppingList, MicroPinner,
KolabNotes and OmniNotes). KolabNotes and OmniNotesmerged
the Pull Request into their test codebase and thanked the contribu-
tion. The maintainer of OmniNotes even said that “Code coverage
is always the best way to contribute!”. The Pull Request submitted
to HomeAssistant was closed without comments, and shortly af-
terwards the project was closed and archived by the maintainer.
Our hypothesis is that, in this early stage, the prototype’s output is
mostly useful for active projects without test cases or with some test

cases but low coverage.

6.2.2 Industrial project. In order to evaluate the usefulness of the
prototype and its output, we reached out to an industrial part-
ner. This industrial partner has a mobile application developed for
handling credit card payments. The application has more than 30
different screens and more than 100k lines of code, using both Java
and Kotlin as programming languages.

In terms of their testing codebase, the project has only unit tests
(about a hundred). Although they do not measure coverage, they
suspect it to be rather low. The project does not have integration
nor system-level tests, nor do they use the Espresso framework.

We were able to show the prototype to two Android developers
in the company. We asked them to try it out and answer a series
of questions afterwards. The evaluation was performed remotely
and asynchronous, due to the ongoing pandemic. The questions
were sent via email. In their evaluation they limited the access to
25 out of 30 screens. This limit was imposed because the remaining
screens interact with Bluetooth devices that are not available when
using an emulator.

After trying out the prototype and inspecting the synthesized
Espresso tests, they reported the following positive aspects. First,
for projects with none or few system-level tests it provides a quick and

simple way to increase their coverage. In other words, the generated
tests were successfully executed and they also serve as a starting

point for creating new test cases. Secondly, although there is no
guarantee, Random Exploration allows the tool to find obscure
bugs that otherwise might reach end users.

They also highlighted the following disadvantages. First, the
synthesized Espresso tests do not provide a clear description of what

are the goals of each test case. Secondly, due to the use of MATE’s
Random Exploration, test cases tend to become large (i.e., up to 50
actions). Such large tests become very fragile when one has a large
app that is constantly growing. Whenever possible, test cases should

target a specific user scenario. Also, Random Exploration might
cause an uneven examination of the app. Likewise, these randomly
generated tests have some undesirably redundant actions that could
be removed. Thirdly, tests generated in one device configuration,
need to be executed in the same configuration. This is caused by
Android UIs changing their appearance depending on the size,
density and orientation of the display.

Once the questionnaire was completed, we asked them whether
they would consider incorporating the tests generated to their
codebase. They answered that first they would need to have a clear
description for each test case. But if that was provided, they said that
they would add all reasonable tests without making any changes to

them. They also commented that by adding those tests, the coverage
of the project would increase. It is worth mentioning here that the
problem of tests summarization is an open research challenge, and
is not constrained to Android test generation [25].

Finally, we asked them what changes to the current prototype
they would suggest to improve its usability (i.e., ease of use by
developers), adoption (i.e., adding the tool into the workflow) and
integration (i.e., the regular use of the tool). In terms of usability,
they proposed: improving failure messages in test cases, adding test
case descriptions, and adding the possibility to guide the exploration
in a semi-automatic form (i.e., having a human-in-the-loop).In terms
of adoption and integration, they mentioned that it is very important
to provide integration plugins for the tools already used in a daily
basis, e.g., Android Studio IDE. Also, in case it is not possible to
fix the problem of having to run the tests in the same device they
were generated, it would be good if the prototype could explore
test cases in several devices at the same time.

7 CONCLUSIONS AND FURTHERWORK

We conducted an empirical study evaluating the feasibility and
challenges of automatically synthesizing Espresso UI tests from
widget-based action sequences. The studywas carried out on several
open-source apps and one industrial project. To further understand
the challenges and limitations of automatically creating Espresso
tests, the study was followed by a quantitative and qualitative
analysis of the results.

Our prototypical implementation and experimental results sug-
gest that leveraging existing testing tools to generate executable
Espresso tests is a promising research direction. On the other hand,
our study unveils concrete challenges that would need attention
before a fully-fledged, industrial-strength solution can be devised.

This work contributes towards bridging the gap between existing
Android app testing tools and developers requiring Android tests
in Espresso format.We believe that the insights learned in this work
are useful for the Android research community and applicable to
other test generation tools that may want to translate their output
to Espresso test cases. The prototype used for the study is open-
source and can be found on GitHub [16].

As future work, we plan to explore different testability trans-
formations that might improve the reliability of the synthesized
Espresso tests. Besides, it would be interesting to extend the Stoat
and Dynodroid testing tools to perform a similar study using se-
quences of widget actions that may differ from the ones generated
by MATE. Another possible line of future work is to perform an em-
pirical study using other testing frameworks such as Appium [1],
in order to examine trade-offs between competing frameworks.
Finally, we plan to assess and improve the quality of the synthe-
sized Espresso tests in terms of fault-detection and non-functional
properties, e.g., readability.

ACKNOWLEDGMENTS

Thiswork is partially funded byUBACYT 2020Mod 1 20020190100233BA,
ANPCYT PICT 2019-01793 and H2020-MSCA-RISE-2018 BehAPI
Project (grant agreement No. 778233).

On the feasibility and challenges of synthesizing executable Espresso tests AST ’22, May 17–18, 2022, Pittsburgh, PA, USA

REFERENCES

[1] [n. d.]. Appium: Mobile App Automation Made Awesome. http://appium.io/.
(Accessed on 08/03/2020).

[2] [n. d.]. calabash/calabash-android: Automated Functional testing for Android
using cucumber. https://github.com/calabash/calabash-android. (Accessed on
08/03/2020).

[3] [n. d.]. Espresso - Android Developers. https://developer.android.com/training/
testing/espresso. (Accessed on 08/03/2020).

[4] [n. d.]. monkeyrunner – Android Developers. https://developer.android.com/
studio/test/monkeyrunner. (Accessed on 08/03/2020).

[5] [n. d.]. Robolectric. http://robolectric.org/. (Accessed on 08/03/2020).
[6] [n. d.]. RobotiumTech/robotium: Android UI Testing. https://github.com/

RobotiumTech/robotium. (Accessed on 08/03/2020).
[7] [n. d.]. UI Automator – Android Developers. https://developer.android.com/

training/testing/ui-automator. (Accessed on 08/03/2020).
[8] 2018. F8 2018: Friction-Free Fault-Finding with Sapienz. https://developers.

facebook.com/videos/f8-2018/friction-free-fault-finding-with-sapienz/.
[9] 2022. Android Instrumentation. https://developer.android.com/reference/

android/app/Instrumentation.html.
[10] 2022. Full description of the JSON schema. https://github.com/FlyingPumba/etg/

blob/master/schema.json.
[11] 2022. ImageMagick’s compare program. https://imagemagick.org/Usage/

compare/.
[12] 2022. ImageMagick’s Fuzz Factor. https://legacy.imagemagick.org/Usage/color_

basics/#fuzz.
[13] 2022. Jackson JSON library. https://github.com/FasterXML/jackson.
[14] 2022. JaCoCo coverage tool. https://www.eclemma.org/jacoco.
[15] 2022. Online related work. https://github.com/FlyingPumba/etg-paper-

replication-package/blob/master/related-work.pdf.
[16] 2022. Prototype’s code. https://github.com/FlyingPumba/etg.
[17] 2022. Replication package. https://github.com/FlyingPumba/etg-paper-

replication-package.
[18] 2022. UI/Application Exerciser Monkey. https://developer.android.com/studio/

test/monkey.html.
[19] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols,

Taijin Tei, and Ilya Zorin. 2018. Deploying Search Based Software Engineering
with Sapienz at Facebook. In SSBSE (LNCS). Springer.

[20] Farnaz Behrang and Alessandro Orso. 2019. Test Migration Between Mobile
Apps with Similar Functionality. In ASE. IEEE, 54–65.

[21] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: Are We There Yet? (E). In ASE. IEEE
Computer Society, 429–440.

[22] Riccardo Coppola, Luca Ardito, Marco Torchiano, and Emil Alégroth. 2020. Trans-
lation from Visual to Layout-based Android Test Cases: a Proof of Concept. In
ICST Workshops. IEEE, 74–83.

[23] Riccardo Coppola, Maurizio Morisio, and Marco Torchiano. 2019. Mobile GUI
Testing Fragility: A Study on Open-Source Android Applications. IEEE Trans.

Reliab. 68, 1 (2019), 67–90.
[24] Luis Cruz, Rui Abreu, and David Lo. 2019. To the attention of mobile software

developers: guess what, test your app! Empirical Software Engineering 24, 4 (2019),
2438–2468.

[25] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer.
2015. Modeling readability to improve unit tests. In ESEC/SIGSOFT FSE. ACM,
107–118.

[26] Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury. 2020.
Time-travel testing of Android apps. In ICSE. ACM, 481–492.

[27] Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. 2018.
Automated Accessibility Testing of Mobile Apps. In ICST. IEEE Computer Society.

[28] Mattia Fazzini, Eduardo Noronha de A. Freitas, Shauvik Roy Choudhary, and
Alessandro Orso. 2017. Barista: A Technique for Recording, Encoding, and
Running Platform Independent Android Tests. In ICST. IEEE Computer Society,
149–160.

[29] Mattia Fazzini and Alessandro Orso. 2017. Automated cross-platform inconsis-
tency detection for mobile apps. In ASE. IEEE Computer Society, 308–318.

[30] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,
Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of Android
applications via model abstraction and refinement. In ICSE. IEEE / ACM, 269–280.

[31] Mark Harman, Lin Hu, Robert M. Hierons, Joachim Wegener, Harmen Sthamer,
André Baresel, and Marc Roper. 2004. Testability Transformation. IEEE Trans.

Software Eng. 30, 1 (2004), 3–16.
[32] R. Jabbarvand, J. Lin, and S. Malek. 2019. Search-Based Energy Testing of Android.

In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
1119–1130.

[33] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. 2013. Real Challenges
in Mobile App Development. In ESEM. IEEE Computer Society, 15–24.

[34] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F. Bissyandé, and Jacques Klein.
2019. Automated Testing of Android Apps: A Systematic Literature Review. IEEE
Trans. Reliab. 68, 1 (2019), 45–66.

[35] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A
Deep Learning-Based Approach to Automated Black-box Android App Testing.
In ASE. IEEE, 1070–1073.

[36] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: an input
generation system for Android apps. In ESEC/SIGSOFT FSE. ACM, 224–234.

[37] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated
testing for Android applications. In ISSTA. ACM.

[38] Stas Negara, Naeem Esfahani, and Raymond P. L. Buse. 2019. Practical Android
test recording with espresso test recorder. In ICSE (SEIP). IEEE / ACM, 193–202.

[39] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020.
Reinforcement learning based curiosity-driven testing of Android applications.
In ISSTA. ACM, 153–164.

[40] Anshuman Rohella and Shingo Takada. 2018. Testing Android Applications Using
Multi-Objective Evolutionary Algorithms with a Stopping Criteria. In SEKE. KSI
Research Inc. and Knowledge Systems Institute Graduate School, 308–307.

[41] Kabir S. Said, Liming Nie, Adekunle Akinjobi Ajibode, and Xueyi Zhou. 2020.
GUI testing for mobile applications: objectives, approaches and challenges. In
Internetware. ACM, 51–60.

[42] Leon Sell, Michael Auer, Christoph Frädrich, Michael Gruber, Philemon Werli,
and Gordon Fraser. 2019. An Empirical Evaluation of Search Algorithms for App
Testing. In ICTSS (LNCS, Vol. 11812). Springer.

[43] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang
Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing
of Android apps. In ESEC/SIGSOFT FSE. ACM.

[44] Ting Su, JueWang, and Zhendong Su. 2021. Benchmarking automated GUI testing
for Android against real-world bugs. In ESEC/SIGSOFT FSE. ACM, 119–130.

[45] Hongyin Tang, Guoquan Wu, Jun Wei, and Hua Zhong. 2016. Generating test
cases to expose concurrency bugs in Android applications. InASE. ACM, 648–653.

[46] Jue Wang, Yanyan Jiang, Chang Xu, Chun Cao, Xiaoxing Ma, and Jian Lu. 2020.
ComboDroid: generating high-quality test inputs for Android apps via use case
combinations. In ICSE. ACM, 469–480.

[47] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. 2018. An empirical study of Android test generation tools in
industrial cases. In ASE. ACM, 738–748.

[48] Haibing Zheng, Dengfeng Li, Beihai Liang, Xia Zeng, Wujie Zheng, Yuetang
Deng, Wing Lam, Wei Yang, and Tao Xie. 2017. Automated Test Input Generation
for Android: Towards Getting There in an Industrial Case. In ICSE-SEIP. IEEE
Computer Society, 253–262.

http://appium.io/
https://github.com/calabash/calabash-android
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner
http://robolectric.org/
https://github.com/RobotiumTech/robotium
https://github.com/RobotiumTech/robotium
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/ui-automator
https://developers.facebook.com/videos/f8-2018/friction-free-fault-finding-with-sapienz/
https://developers.facebook.com/videos/f8-2018/friction-free-fault-finding-with-sapienz/
https://developer.android.com/reference/android/app/Instrumentation.html
https://developer.android.com/reference/android/app/Instrumentation.html
https://github.com/FlyingPumba/etg/blob/master/schema.json
https://github.com/FlyingPumba/etg/blob/master/schema.json
https://imagemagick.org/Usage/compare/
https://imagemagick.org/Usage/compare/
https://legacy.imagemagick.org/Usage/color_basics/##fuzz
https://legacy.imagemagick.org/Usage/color_basics/##fuzz
https://github.com/FasterXML/jackson
https://www.eclemma.org/jacoco
https://github.com/FlyingPumba/etg-paper-replication-package/blob/master/related-work.pdf
https://github.com/FlyingPumba/etg-paper-replication-package/blob/master/related-work.pdf
https://github.com/FlyingPumba/etg
https://github.com/FlyingPumba/etg-paper-replication-package
https://github.com/FlyingPumba/etg-paper-replication-package
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html

