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Abstract
Despite their growing popularity, apps tend to contain defects
which can ultimately manifest as failures (or crashes) to end-
users. Different automated tools for testing Android apps
have been proposed in order to improve software quality.
Although Genetic Algorithms and Evolutionary Algorithms
(EA) have been promising in recent years, in light of recent
results, it seems they are not yet fully tailored to the problem
of Android test generation. Thus, this thesis aims to design
and evaluate algorithms for alleviating the burden of testing
Android apps. In particular, I plan to investigate which is
the best search-based algorithm for this particular problem.
As the thesis advances, I expect to develop a fully open-source
test case generator for Android applications that will serve
as a framework for comparing different algorithms. These
algorithms will be compared using statistical analysis on both
open-source (i.e., from F-Droid) and commercial applications
(i.e., from Google Play Store).
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1 Research Problem
As software continues increasing its importance in our daily
lives, the use of mobile devices such as smartphones and
tablets increases as well. It is estimated that mobile technolo-
gies are now used by two-thirds of the global population [4].
In this context, smartphones have become the dominant plat-
form for mobile time consumption, in terms of total minutes
across every market. About 80% of all mobile time [3] is spent
in application consumption (commonly known as “apps”).
As of November 2019, there are over 2.8 million applications
available on Google’s Play App Store [7].
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Despite their growing popularity, apps tend to contain
defects which can ultimately manifest as failures (or crashes)
to end-users. Similarly to other software, testing mobile apps
allows developers to ensure a minimum quality threshold for
the applications they write. This process typically involves
manually writing test cases. Testing intends to assure that
new features behave as expected and that changes to the
source code do not break previous existing functionality.
However, testing is a very time consuming and error-prone
task, and hence expensive [21].
Different automated tools for testing Android apps have

been proposed in order to improve software quality [15, 32].
Monkey [8], regarded as the state-of-practice, is a popular
random-based testing tool for Android applications. It is pro-
vided with the Android SDK, but it only reports uncaught
runtime exceptions during a random exploration. Further-
more, Monkey does not allow users to replay sequences of
events (i.e., test cases), which is critical for understanding
the source of the regression fault. Dynodroid [23] is a tool
designed to overcome the limitations of Monkey that ex-
tends pure random testing with two feedback directed biases:
Biased Random, which uses context adjusted weights for each
event, and Frequency, which has a bias towards least recently
used events.
Currently, there are two tools regarded as state-of-the-art

in the literature: Sapienz [24] and Stoat [30]. On one hand,
Sapienz [24] is a test generator that has applied search-based
testing to Android apps. Its main distinctive feature is the
usage of a multi-objective evolutionary algorithm. Mao et
al. [24] have shown that it can outperform both Monkey
and Dynodroid. This success led to its recent production
deployment at Facebook [2] where it is used to automatically
generate test cases [9]. On the other hand, Stoat [30] is a test
generator that has applied model-based evolutionary testing.
It uses dynamic exploration to build and evolve a probabilistic
UI state-transition model from which to gather test cases.
Ting Su et al. [30] have shown that it can outperform Sapienz.
These works inspire the main question of my thesis: “Which

is the best search-based algorithm to use for Android test
generation?”. Although fairly simple to formulate, it yields
several secondary questions that I will need to address before
being able to answer the former.
Should we use population-based evolutionary algorithms

(e.g., NSGA-II [16]), as it is traditional in the test generation
literature, or a completely different search-based technique
from the broader field of meta-heuristics (e.g., Simulated An-
nealing [31])? In particular, as I will explain in Section 5, there
are strong reasons to believe that using population-based evo-
lutionary algorithms might not be the best fit for Android
test generation. What is more, most of the evolutionary algo-
rithms presented in the testing literature are tailored towards
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unit test generation (e.g., like the ones used in EvoSuite
tool [19]), but in recent years there have been some proposals
for system-level test generation (e.g., MIO [10]) which might
be worth exploring.
What is the best internal representation of individuals for

these algorithms? Different tools have made different choices.
For example, Sapienz uses atomic actions (e.g., pressing down
a key, taping the screen at a given certain coordinate, etc.)
while tools like MATE [17] use widget actions (e.g., clicking
a button on the screen). This choice is very important since
using one or the other will yield different search spaces. To
the best of my knowledge, there are no studies on the impact
of this decision on algorithms’ effectiveness.
What is the best output format for an Android test gen-

eration tool? This is important because reading and saving
the generated test cases might prompt developers to write
similar ones. As an example, Sapienz outputs a sequence
of atomic actions that are intended to be used by machines
(i.e., for re-executing a failing case), and Stoat only yields
bug reports. In both cases the output, although useful, is
not readable nor understandable by a human, and as such
developers are not able to add these automatically generated
“tests” to their source code repositories to build a proper
regression test suite.

2 Research Hypothesis
The Sapienz approach presented in Mao et al. [24] distin-
guishes from previous Android testing tools due to these
two features:

i) A multi-objective evolutionary algorithm (NSGA-II [16])
that generates test sequences, simultaneously maxi-
mizing statement coverage and fault detection while
minimizing test length.

ii) The representation of test cases as sequences of atomic
and motif actions.

An atomic action is an event that cannot be further decom-
posed and motif actions are composed “events” that represent
a usage pattern on the app. These patterns follow common
user behavior, such as filling-in all text fields in the current
view and then clicking a button. As such, motif actions are
based on the User Interface (UI) information available in the
current view.
Since these features (i.e., the NSGA-II algorithm combined

with motif actions) were presented simultaneously, it would
be interesting to study the impact of each of them separately.
In particular, I am interested in comparing different choices
of evolutionary algorithms for Android test generation. This
has been already studied for Java unit test generation [14],
but it has not been instantiated for Android system level
test generation. As a system test execution is much more
costly than executing unit tests, the effectiveness of a given
evolutionary algorithm can be degraded (e.g., because it
cannot achieve enough generations to converge in the allotted
time). Also, it has been shown that (at least for unit test
generation), due to flat fitness landscapes and often simple
search problems, Random Search [22] can perform as well
as evolutionary algorithms, and sometimes even outperform

them [29]. Thus, I would also like to study the choice of
Random Search for Android test generation. The initial work
I have conducted so far, outlined in Section 5, presents some
evidence that the search-based approach used in Sapienz is
not statistically better than Random Search. These results
are aligned with empirical studies such as the one conducted
by Sell et al. [28].
Regarding the internal representation of individuals, my

current hypothesis is that using a widget-based representation
would be more beneficial. Intuitively, if several atomic actions
can represent the different “taps” that can be triggered on
a specific button (i.e., at the different coordinates being
occupied by such button), they can all be summarized with a
single widget event (e.g., one simply stating that the button
is being clicked). I believe this change in the abstraction level
at which the actions take place can have a huge impact on
the size and landscape of the search space. In other words, it
would facilitate the exploration and help algorithms achieve
higher effectiveness.
Finally, concerning the desired output format, my current

hypothesis is that tools would benefit from using a more
popular framework such as Espresso [5]. This testing frame-
work provides an API that helps developers write concise and
readable Android UI tests, and it is officially supported.

3 Expected Contributions
I expect the main theoretical contribution of this thesis to
be a search-based algorithm specifically tailored for Android
test generation. This will also involve designing appropriate
evolutive operators (i.e., crossover and mutation) so that the
search space yields a better, easier to navigate, landscape.
Such an algorithm would need to be proven to statistically
outperform the current state-of-the-art and state-of-practice
techniques. Moreover, the design decisions for this algorithm
should be based on careful and methodological experimenta-
tion over a broad number of subjects as outlined in Section
4. I also expect to obtain the following artifacts from the
successful completion of this thesis.
A new, fully open-source, test case generator for Android

applications. Initially, this tool will serve as a framework for
comparing different algorithms for Android test generation.
As the thesis advances, I expect it will become more mature
and, hopefully, useful for developers.
An Android Studio plugin that helps developers to easily

run the devised tool and later analyze its output. As stated
in Section 1, Monkey is currently the most popular tool
for automatically testing Android applications. I believe
Monkey’s popularity is partly because it is provided with
the Android SDK. In order to smooth the user experience,
I will develop a plugin for Android Studio, the official IDE
for Android development.

4 Evaluation Procedures
Given that this thesis is focused on designing different al-
gorithms for automatically generating test cases, the choice
of proper evaluation techniques to assess such algorithms is
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essential to its success. That is, using an inadequate eval-
uation technique to compare two algorithms can lead to
falsely believing that one is better than the other. This would
ultimately lead to a misguided research direction.
Taking into consideration that the output of these al-

gorithms are test cases (or test suites), this thesis will use
popular metrics already presented in the related literature [12–
14, 27, 29, 33], such as: statement coverage, activity coverage
(i.e., screens coverage), fault-revealing capability and length of
the test cases generated. It is important to note that, although
there are several studies showing evidence of a relationship
between statement coverage and fault detection [18, 25], it
is also known that the former does not imply the latter. For
this reason, all the studies in this thesis will use both metrics
whenever possible.
Since most of these algorithms involve non-deterministic

components, it is of paramount importance the use of proper
statistical analyses. When comparing different randomized
algorithms over a set of subjects, this thesis will follow the
same procedures as Campos et al. [14], which in turn are
derived from the recommendations outlined by Arcuri et
al. [11]. Specifically, this thesis will apply Friedman test [20]
with a significance level of α = 0.05. The Friedman test
is a non-parametric test for multiple-problem analysis and
it departs from the traditional tests for significance (e.g.,
the Wilcoxon test) since it computes the ranking between
algorithms over multiple independent problems, i.e., Android
applications in our case. A significant p − value indicates
that the null hypothesis has to be rejected (i.e., no algorithm
in the tournament performs significantly different from the
others) in favor of the alternative one (i.e., the performance
of algorithms is significantly different from each other). If the
null hypothesis is rejected, this thesis will use the post-hoc
Conover’s test for pairwise multiple comparisons. Such a test
is used to detect pairs of algorithms that are significantly
different. The p − values obtained with the post-hoc test will
be adjusted with the Holm-Bonferroni procedure to correct
the statistical significance level (α = 0.05) in the case of
multiple comparisons.
In the cases where a more detailed comparison between

two algorithms in a given subject is needed, this thesis will
use the Wilcoxon-Mann-Whitney U-test to determine if there
is a statistically significant difference and the Vargha-Delaney
A12 effect size to measure this difference (if any).
Finally, this thesis will use both open-source (i.e., from

F-Droid1) and commercial applications (i.e., from Google
Play Store2) as subjects for the experimentation.

5 Results Achieved so Far
At the beginning of the Ph.D., I performed a large empirical
study aimed to deepen into how the main features of Sapienz
(namely, the NSGA-II algorithm and the representation of
individuals using motif actions) impact over effectiveness. In
order to achieve this, the study compared the effectiveness of
1https://f-droid.org/en/
2https://play.google.com/store

several evolutionary algorithms on 8 experimental subjects.
The total execution time was 180 days in a 16 core computer.
The evolutionary algorithms considered in the study were
taken from the literature [14]: Standard GA, Steady State
GA, Monotonic GA, 1 + λ, λ EA, μ, λ EA, and μ + λ EA
(as well as the original algorithm implemented in Sapienz:
NSGA-II).
To make this comparison fair, all algorithms were imple-

mented on top of Sapienz. Nevertheless, as its authors have
stated, the open-source version of Sapienz is regarded as
“out-of-date and no longer supported”, with the latest activity
in the version history recorded in May 2016 [1]. Therefore, I
spent some time repairing Sapienz’s outdated open-source
implementation, fixing some issues such as proper time budget
management, handling of timeouts when issuing commands
to emulators, recovery from an emulator crash. It is worth
noting that this modification of Sapienz is not meant to be
a contribution of the Ph.D. It will serve only as a playground
for comparing different algorithms.
The experimental results collected have shown that, for the

case of Android test generation, the multi-objective NSGA-
II algorithm outperforms the other evolutionary algorithms
mentioned. However, I also discovered that NSGA-II is not
statistically distinguishable from Random Search, which casts
doubts about the actual effectiveness of multi-objective evolu-
tionary algorithms for Android test generation. In terms of
the impact of motif actions, the experimental results provided
evidence that both NSGA-II and Random Search performed
statistically better when motif actions were included. These
findings suggest that Sapienz’s improvement in effectiveness
is due to adding motif actions rather than using a particular
choice of multi-objective evolutionary algorithms. I would like
to continue this research line in the future years by studying
the impact that each particular motif action has on a broader
set of subjects.
Although multi-objective approaches as the one used by

Sapienz [24] seemed promising in recent years, in light of
our previous results, Genetic Algorithms and Evolutionary
Algorithms (EA) in general are not yet fully tailored to the
problem of Android test generation. In particular, the re-
sults showed that, in our case, the fitness evaluation might
take up to 60 seconds for a test case, depending on its length.
Overall, this resulted in approximately 30 generations for
each EA on average. However, in order to optimize a pop-
ulation towards a given objective, EAs require to evolve as
many generations as possible. Therefore, the cost of a fitness
evaluation (i.e., executing a system-level Android test on
an emulator) directly affects the number of generations the
EA can evolve.
Currently, I am working on a tool for automatically gener-

ating Espresso test cases. This tool will leverage the test cases
generated by tools such as Sapienz and MATE. Although
still incipient, I plan on evaluating this tool by generating
Espresso test cases for several open-source projects and sub-
mitting the generated code via Pull Requests.
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6 Planned Timeline for Completion
Having already completed the first year of my Ph.D., I expect
the following timeline for the completion of the remaining
tasks in this thesis. It is important to note that some of
the following tasks are of a more exploratory nature, i.e.
methodically trying different approaches to see what works
and what does not.
Second year: Finish the Espresso test generator and its

validation experiments. This will involve applying the current
prototype on a broader set of subjects and ensuring that it
works well for the largest possible number of subjects.
Third year: Explore the different alternatives for the inter-

nal representation of individuals. This task will involve using
a tool with support for both atomic and widget actions (e.g.,
modifying the implementation of Sapienz which I have al-
ready fixed) and running experiments to understand what is
the impact of such decisions on the algorithms’ effectiveness.
What is more, it would also be interesting to evaluate if the
Espresso API mentioned before is suitable to be used for the
internal representation (similar to how EvoSuite [19] uses
JUnit [6]).
Fourth year: Explore several novelty search-based approaches
presented in recent years for the context of Android test gen-
eration. For example, Arcuri [10] has proposed MIO (Many
Independent Objectives) which is a technique specially tai-
lored for the context of very large amounts of objectives and
limited search budgets (a typical restriction in system/end-
to-end testing). In the same paper, MIO was shown to out-
perform several state-of-the-art multi-objective techniques
such as DynaMOSA [26].
Fifth year: Using the knowledge gathered during the thesis,

develop a custom Android test generator. As stated in
Section 3, I also expect to develop an accompanying Android
Studio plugin that will ease the use of this tool.
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