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ABSTRACT

Testing is a very important and expensive part of developingAndroid
applications. Several tools for automatically testing Android ap-

plications have been proposed. In particular, Sapienz is a search-

based tool that has been recently deployed in an industrial setting.

Although it has been shown that Sapienz outperforms several state-

of-the-art tools, it is still to be seen what features of Sapienz impact

the most on its effectiveness.

We conducted an extensive empirical study where we compare

the impact of the search algorithm and the usage of motif genes, a

more compact representation of individuals. Our empirical study

shows that the usage of motif genes improves statement coverage

both for evolutionary algorithms and random approaches. In partic-

ular, our study shows that although the evolutionary algorithm used

by Sapienz (i.e., NSGA-II) outperforms other search algorithms, it

is not statistically distinguishable from Random Search. These facts

cast doubts about the use of evolutionary algorithms in the context

of Android test generation and suggest that motif genes have a

great impact on the overall effectiveness.

KEYWORDS

Android, Sapienz, Empirical Study, Test Generation, Evolutionary

Algorithms, Genetic Algorithms, Random Search

ACM Reference Format:

Iván Arcuschin Moreno, Juan Pablo Galeotti, and Diego Garbervetsky. 2020.

Algorithm or Representation? An empirical study on how SAPIENZ achieves

coverage. In AST ’20: International Conference on Automation of Software

Test (AST ’20), October 7–8, 2020, Seoul, Republic of Korea. ACM, New York,

NY, USA, 10 pages. https://doi.org/10.1145/3387903.3389307

1 INTRODUCTION

As software keeps becoming more important in our daily lives, the

use of mobile devices such as smartphones and tablets increases

as well. It is estimated that mobile technologies are now used by

two-thirds of the global population. Furthermore, mobile users uni-

versally consume more digital minutes per person – more than

double in the vast majority of countries and regions [2]. In this con-

text, smartphones have become the dominant platform for mobile
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time consumption, in terms of total minutes across every market.

About 80% of all mobile time [2] is spent in application consumption

(commonly known as “apps”). As of January 2020, there are over

2.8 million applications available on Google’s Play App Store [4].

Despite their growing popularity, apps tend to contain defects

which can ultimatelymanifest as failures (or crashes) to the end-user.

Similarly to other software, testing mobile apps allows developers

to ensure a minimum quality threshold for the applications they

write. This process typically involves manually writing test cases.

Testing intends to assure that new features behave as expected

and that changes to the source code do not break previous existing

functionality. However, testing is a very time consuming and error-

prone task, and hence expensive [27]. To cope with this problem,

different tools for automatically testing Android applications have

been proposed [16].

Sapienz [33] is one of such tools, which has been proven to

outperform several state-of-the-art tools like Dynodroid [31] and

Monkey [5]. In recent years, a re-engineered version of the tool has

been deployed in the software company Facebook [6]. Essentially,

the Sapienz approach presented in Mao et al. [33] distinguishes

from previous Android testing tools due to these two features:

i) Amulti-objective evolutionary algorithm (NSGA-II [17]) that

generates test sequences, simultaneously maximising state-

ment coverage and fault detection while minimising test

length.

ii) The representation of test cases as sequences of atomic and

motif actions.

where an atomic action is an event that cannot be further decom-

posed (e.g., pressing down a key, taping the screen at a certain

coordinate, etc.). On the other hand, motif actions are composed

“events” (i.e., a sequence of atomic actions) that represents a usage

pattern on the app.

Since these features (i.e., the NSGA-II algorithm combined with

motif actions) were presented simultaneously, we would like to

study the impact of each of them separately. What is more, Mao et

al. [33] only performed cross-tool comparisons of their technique.

This type of comparisons are undesirable since they might have

conflating factors arising from implementation details.

In particular, we are interested in comparing different choices of

evolutionary algorithms for Android test generation. In [40], Sell

et al. present a study comparing different algorithms for Android

test generation, but these algorithms are evaluated on the test-

ing tool MATE [19]. Among other differences, MATE differs from

Sapienz in that it uses a widget-based representation of individuals.

Widgets are interactive components on an Android UI (such as

buttons, text fields, etc.). In contrast, Sapienz individuals are based

on sequences of actions that do not depend on widgets (i.e., the
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atomic and motif actions mentioned above use only screen coordi-

nates). This difference affects how evolutionary operators (such as

crossover and mutation) are performed. Therefore, we would like

to study how different evolutionary algorithms might behave by

implementing them on the Sapienz tool. Also, it has been shown

that (at least for unit test generation), due to flat fitness landscapes

and often simple search problems, Random Search [28] can perform

as well as evolutionary algorithms, and sometimes even outperform

them [41]. Thus, we would also like to study the choice of Random

Search for Android test generation.

Therefore, in this paper, we aim to gain more insight into the

effects of the main features of Sapienz: the choice of the NSGA-II

multi-objective algorithm and the representation of the individuals

using motif actions. Specifically, the contributions of this paper are

the following:

• Experiment design:We present an empirical study com-

paring the effectiveness in terms of statement coverage of 9

different algorithms for Android test generation (namely,

Random Search, Random Search with motif actions, Stan-

dard GA, Monotonic GA, Steady-State GA, (𝜇 + 𝜆) EA, (𝜇, 𝜆)
EA, NSGA-II and NSGA-II with motif actions) using 8 ex-

perimental subjects (Section 4). This study involves both

algorithms with and without motif actions, as well as a

Random Search approach that will serve as a baseline for

comparison. The total execution time was 180 days in a 16

core computer.

• Experiment results:We present the results of our empiri-

cal study (Section 4.2), leading to a total of 2160 data-points

based on the 72 different configurations and 30 repetitions

for each run.

Our empirical study yields the following findings:

• Both NSGA-II and Random Search improve their effective-

ness when test cases include motif actions.

• Among all the evolutionary algorithms considered in our

study, NSGA-II is the one achieving the highest statement

coverage. Surprisingly, NSGA-II does not distinguish with

statistical significance from Random Search.

In summary, our experiment provides evidence that the causes

for Sapienz performance gains are more attributable to the repre-

sentation of test cases including motif actions rather than to the

usage of an evolutionary approach.

The remainder of this article is organized as follows: Section 2

and Section 3 present the necessary background. In particular, they

briefly introduce the techniques considered for the empirical study.

Section 5 discusses closely related work. Finally, Section 6 concludes

the paper and outlines potential future works.

2 BACKGROUND

Evolutionary Algorithms (EAs) are a specific type of population-

based meta-heuristic. These algorithms are used to solve optimi-

sation problems and work by mimicking the process of natural

selection. They typically start with a randomly generated popula-

tion (i.e., a set of individuals). Each individual in the population

represents a solution to the optimisation problem. Then, several

iterations evolve the population towards a given goal. To produce

Figure 1: Representation of individuals in evolutionary al-

gorithms as presented by Mao et al. [33]

a new generation, the fittest individuals are selected according to

some selection mechanism (e.g., rank selection, tournament selec-

tion, etc.). After this, the new offspring is generated by applying

genetic operators like crossover and mutation with certain para-

metric probabilities.

2.1 Representation of individuals

The representation of individuals in Sapienz follows the Whole

Test Suite generation (WTS) [22] principles. WTS evolves whole

test suites for an entire coverage criterion at the same time (i.e.,

statements in the system under test). In WTS, each individual is a

test suite (i.e., a set of test cases). Each test case can be seen as a

“chromosome” of the individual. Then, each of these chromosomes

will be represented as a sequence of genes (test events).

In our context, and to make comparisons between Sapienz and

other algorithms fair, these genes will consist of a combination of

atomic and motif genes. As defined by Mao et al. [33], an atomic

gene is an event that cannot be further decomposed (e.g., press

down a key, tap screen at a certain coordinate, etc.), while amotif

gene is interpreted as a sequence of atomic events 〈𝑒1, . . . , 𝑒𝑝 〉. This
representation is depicted in Figure 1.

Each motif gene defined represents a usage patern on the app.

These patterns follow common user behaviour, such as filling-in

all text fields in the current screen and then clicking a button. As

such,motif actions are based on the User Interface (UI) information

available on the current screen.

2.2 Optimisation goals

To guide the exploration towards a desired goal (i.e., covering all

statements in the system), a fitness function must be defined. This

function will evaluate each individual in the population. Then,

individuals with better fitness values are more likely to survive

and propagate their genes to further generations. In the context of

test suite generation, the fitness functions are typically based on

structural coverage criteria such as statement coverage or branch

coverage.

In many cases, it is desirable to optimise the generated test cases

towards multiple (possibly conflicting) optimisation goals. A simple

mechanism for combining multiple coverage goals is through a

weighted linear combination [38]. However, a linear combination

requires non-conflicting optimisation goals (e.g., high statement

coverage and high mutation score [23]). For instance, a tester would

like to obtain a test suite with higher statement coverage and fewer

test case length, for debugging and maintenance purposes. It is

easy to see that these objectives are conflicting: increasing test
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length might lead to higher statement coverage while decreasing

test length might reduce the coverage. Multi-objective evolutionary

algorithms are especially focused on targeting several (possibly

conflicting) goals simultaneously.

2.3 Random Search

Random Search [28] is a simple approach for the test suite genera-

tion problem. It consists of repeatedly sampling candidates from

the search space. Once the budget is exhausted, the fittest sampled

individual is returned. Due to its simplicity, it is very useful as a

baseline for studying the contributions of any proposed technique.

For unit test generation, it has been shown that Random Search

performance is often as effective as other evolutionary algorithms,

and it can also outperform them if the system under test is simple

enough [41].

2.4 Genetic Algorithms

In this study we will use the Standard Genetic Algorithm (GA) as

described by Campos et al. [14]. It starts by generating an initial

random population of size 𝑝𝑠 . The population is then evaluated
using a fitness function 𝛿 . Each iteration (i.e., “generation”) of the
algorithm consists of building a new population and then evalu-

ating each new individual in it. The new population is created by

repeatedly choosing a pair of individuals from the current popu-

lation and then, recombining them into two new individuals. The

selection is done with a strategy 𝑠𝑓 such as rank-based, elitism or

tournament selection. The recombination is done with a crossover

function 𝑐 𝑓 such as single-point or multiple-point, with probability
𝑐𝑝 . Before inserting the offspring into the new population, mutation

is applied independently on both, with probability𝑚𝑝 . This proba-

bility usually is 1
𝑛 , where 𝑛 is the number of genes in a chromosome.

This ensures that, on average, at least one gene is mutated on each

offspring, maintaining the diversity in the population.

Several variants of the Standard GA exist that strive to improve

effectiveness. In particular, we consider the following alternatives:

• Monotonic GA: Similar to the Standard GA, but it only

includes either the best offspring or the best parent in the

next population. This ensures that achieved fitness value

does not decrease as the population evolves.

• Steady State GA: This algorithm uses the same replacement

strategy as the Monotonic GA, but instead of creating a new

population in each generation, the offspring replaces parents

in the current population immediately after they are mutated

and evaluated.

2.5 Evolutionary Algorithms

The (𝜇 + 𝜆) Evolutionary Algorithm (EA) [39] is a mutation-based

algorithm [43]. In this case, 𝜇 represents the size of parents and 𝜆 the
size of the offpsring. For each individual in the current population,

mutation is applied independently on each gene with probability
1
𝑛 . After mutation, the best 𝜇 individuals are selected among a
combined pool of parents and offspring to constitute the new popu-

lation. Therefore, parents will be replaced only if a better offspring

is found. A variant of this is a (𝜇, 𝜆) EA, where the parents are
discarded and the new 𝜇 individuals are only selected among the
offspring.

3 THE SAPIENZ APPROACH

Sapienz [33] is a multi-objective Android test generation tech-

nique aiming at maximising code coverage and fault revelation,

while minimising the length of fault-revealing test sequences.

In order to cope with the conflicting goals (i.e., maximising cov-

erage while minimising test length), Sapienz employs the NSGA-

II [17] multi-objective evolutionary algorithm, which is widely-used

in search-based software engineering (SBSE) research [26]. This

algorithm uses a fast non-dominated sorting with a selection oper-

ator which creates a mating pool by i) combining the parent and

child populations, and ii) selecting the best 𝑁 solutions according

to fitness and spread. During the selection process, all objectives

are combined using a Pareto-optimal [20] search-based approach.

Formally, an individual 𝑥 is said to be dominated by another indi-
vidual 𝑦 (𝑥 ≺ 𝑦) according to a fitness function if and only if 𝑥 is
partially less than 𝑦:

∀ 𝑖 = 1, . . . , 𝑛, 𝑓𝑖 (𝑥) ≤ 𝑓𝑖 (𝑦) ∧ ∃ 𝑖 = 1, . . . , 𝑛 : 𝑓𝑖 (𝑥) < 𝑓𝑖 (𝑦)

Then, a Pareto-optimal set consists of all the non-dominated

individuals (belonging to all solutions S):

𝑃∗ � {𝑥 ∈ 𝑆 | �𝑦 ∈ 𝑆, 𝑥 ≺ 𝑦}

Therefore, a solution to the multi-objective optimisation prob-

lem is not a single point in the search space (as in WTS generation

is), but a family of points. In practice, this means individuals with

longer test sequences are not discarded when they are the only ones

finding faults, nor where they are necessary to achieve higher code

coverage. Thus, through its use of Pareto optimality, Sapienz pro-

gressively replaces the longer sequences with shorter test sequences

when they are equally good.

3.1 Exploration strategy

In Sapienz one individual is a test suite. As mentioned previously,

each individual consists of several chromosomes (test cases) and

each chromosome contains multiple genes (test events), which con-

sist of a random combination of atomic and motif genes. Event

sequences in the test cases are generated and executed by a special

component called MotifCore. This component combines random

fuzzing and systematic exploration, corresponding to the two types

of genes Sapienz supports: atomic genes and motif genes. The be-

haviour of eachmotif gene depends on the UI information available

at the moment of its execution. These genes are used to perform

common user patterns during the exploration, such as filling-in all

text fields on the screen and clicking the actionable buttons.

4 EMPIRICAL STUDY

We would like to investigate how the evolutionary algorithm and

the representation of individuals in Sapienz affect the overall per-

formance of test generation. Thus, we pose the following research

questions:

RQ1 (Representation)What is the contribution of motif genes in

Sapienz effectiveness?

RQ2 (Algorithm) What is the contribution of the NSGA-II evolu-

tionary algorithm in Sapienz effectiveness?
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Table 1: Subjects used in empirical study.

Subject Description Ver. Date LOC

Arity Scientific calculator 1.27 2012-02-11 2,821

BookWorm Book collection manager 1.0.18 2011-05-04 7,589

DroidSat Satellite viewer 2.52 2015-01-11 15,149

FillUp Calculate fuel mileage 1.7.2 2015-03-10 10,400

JustSit Meditation timer 0.3.3 2012-07-26 728

Kanji Character recognition 1.0 2012-10-30 200,154

L9Droid Interactive fiction 0.6 2015-01-06 18,040

Maniana User-friendly todo list 1.26 2013-06-28 20,263

In order to answer these questions, we conducted an empirical

study. In the following subsection, we describe the experimental

setup.

4.1 Experimental setup

For this study, we tried to mimic the experimental setup used in

Study #2 presented by Mao et al. [33] as close as possible.

4.1.1 Selection of Subjects Under Test. We chose to use the 10 sub-

jects already used in Study #2 of [33]. These subjects were randomly

picked by the authors of Sapienz from the F-Droid1 repository

of open-source Android applications. Two subjects were prelim-

inary discarded (BabyCare and Hydrate) due to missing source
code (BabyCare) and dependencies on libraries that are no longer
supported by the Android platform version used in our study

(Hydrate). The remaining 8 subjects used in our study are shown
in Table 1.

It is worth noticing that we have not used any of the 68 apps

used in Study #1 nor any of the 1,000 Google Play apps used in

Study #3 of [33] since those studies present no statistical analysis,

as authors did not repeat any execution, and they alternatively used

real devices and emulators to evaluate fitness. By doing this, we

tried to avoid selection bias.

4.1.2 Measuring effectiveness. We opted to measure effectiveness

using only statement coverage as other studies did [10, 11, 13, 37,

41, 47, 48]. Although this metric does not directly indicate the fault

detection capability of each algorithm, several studies show evi-

dence of a relationship between the former and statement coverage

[21, 34].

4.1.3 Implementation. As we explained in Section 3, Sapienz [33]

implements a multi-objective NSGA-II evolutionary algorithm, in-

cluding a representation of individuals as sequences of both atomic

and motif genes. We extended the latest publicly available ver-

sion of Sapienz at GitHub [1], adding the algorithms described in

Section 2.

However, as the authors stated, this implementation is regarded

as “out-of-date and no longer supported”, with the latest activity in

the version history recorded in May 2016. Due to this, we enhanced

the latest version of Sapienz fixing some issues such as proper time

budget management, handling of timeouts when issuing commands

to emulators, recovery from an emulator crash.

Besides Sapienz, we have considered 8 algorithms that we have

implemented in our extension of Sapienz. To be specific, Random

Search (with and without motif genes), Standard GA, Monotonic

1https://f-droid.org/en/

GA, Steady State GA, 𝜇 +𝜆 EA, (𝜇, 𝜆) EA and NSGA-II (i.e., Sapienz

without motif genes). All the implemented algorithms and the en-

hanced Sapienz implementation are publicly available on GitHub2.

For this article, we considered a subset of the algorithms stud-

ied in [14]. We discarded many-objective search algorithm (i.e.,

MOSA [35] and DynaMOSA [36]) since these algorithms were orig-

inally designed to work with approach level and branch distance,

which are not provided by EMMA tool [3].

It is worth noticing that the MotifCore component of Sapienz

(that handles the motif genes) was not modified. In other words,

the atomic and motif genes supported in this study are the same

that were proposed by Mao et al. [33].

4.1.4 Parameters selection. The parameters were selected follow-

ing the choices made in Study #2 of [33]. For the crossover function,

the uniform crossover operator was used. For the mutation func-

tion, a combination of shuffling and one point crossover was used.

The crossover and mutation probabilities were set to 0.7 and 0.3,
respectively. The selection function used for NSGA-II algorithm

was the same as the one depicted by their original authors [17]. The

selection function used for the single-objective EAs was roulette

selection. The maximum number of generations was set to 100,

although none of the evolutionary algorithms accomplished this

amount of generations. Population size for each generation was 50

individuals while individuals were composed of 5 test cases. The

initial length of each test case was randomly selected between 20

and 500 events. All of these parameters were kept throughout all

the executions. We opted to keep the parameters constant to ensure

that comparison between the algorithms is fair; since tuning the pa-

rameters for each algorithm might change their effectiveness [10].

4.1.5 Experiment Procedure. All test cases were generated on

Android KitKat (API 19) because it is the latest Android version

supported by the Sapienz prototype publicly available at GitHub.

All techniques are fully automated and no manual intervention was

provided (e.g., logins) during the execution of the test generators.

We executed all test generation algorithms for this study in the

Microsoft Azure Cloud Computing Platform3. The type of virtual

machine chosen was D16s_v3, which features 16 cores and 64GB

of RAM. The operating system installed on these virtual machines

was Ubuntu 14.04. On each 16 core machine, 16 Android emulators

were launched.

Given the random nature of the algorithms, we decided to run

30 repetitions on each subject to gain statistical significance. For

each of these executions, we set a maximum time budget of 2 hours.

We conservatively doubled the original 1 hour time budget used

in [33] to mitigate any emulator or hardware difference. This is by

no means a threat to evolutionary approaches as more time budget

allows more fitness evaluations (i.e., more generations).

Therefore, the total experimentation time was 9 algorithms ×

8 apps × 30 repetitions × 2 hours each = 4.320ℎ𝑠 (i.e., 180 days of
16 core machines). If we consider the invested time for emulation,

this represents 4.320ℎ𝑠 × 16 𝑒𝑚𝑢𝑙𝑎𝑡𝑜𝑟𝑠 = 69.120ℎ𝑠 (i.e., 2.880 days)
In the Sapienz prototype available at GitHub, the MotifCore

component is used for both generating new random test sequences

2https://github.com/FlyingPumba/evolutiz
3https://azure.microsoft.com
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and for executing a given test sequence. The latter is required for

obtaining the statement coverage of a test suite. However, we found

that this component has a known defect which hinders obtaining

the correct fitness valuewhile generating new test sequences. There-

fore, it was required to re-execute the generated random tests to

obtain their correct fitness value. Consequently, to avoid penalizing

those approaches that heavily rely on random test generation (such

as Random Search) we do not consume any time budget during

random test case generation with the MotifCore component.

4.1.6 Experiment Analysis. Statement coverage for the generated

test suites was obtained automatically using the EMMA tool [3].

For the single objective genetic algorithms (i.e., Standard GA, Mono-

tonic GA, Steady State GA, 𝜇 + 𝜆 EA and (𝜇, 𝜆) EA) we report the
statement coverage achieved by the best individual in the last gener-

ation. For Random Search, we report the highest coverage achieved

by any individual randomly sampled. For the multi-objective NSGA-

II algorithm, since the solution is not a single individual but a set

of individuals (i.e., the Pareto-optimal front), we report the highest

statement coverage achieved by an individual in the Pareto-optimal

front.

For the statistical analysis, we followed the same procedures as

Campos et al. [13] for comparing different randomized algorithms

over a set of subjects. Specifically, we apply the Friedman test [24]

with significance level 𝛼 = 0.05 to compare the 9 algorithms on the 8
subject Android applications presented in Table 1. Each algorithm

has 8 data points representing the average of achieved statement

coverage over the 30 independent repetitions for a given subject

application.

The Friedman test is a non-parametric test for multiple-problem

analysis and it departs from the traditional tests for significance

(e.g., the Wilcoxon test) since it computes the ranking between

algorithms over multiple independent problems, i.e., Android ap-

plications in our case. A significant 𝑝 − 𝑣𝑎𝑙𝑢𝑒 indicates that the null
hypothesis (i.e., no algorithm in the tournament performs signifi-

cantly different from the others) has to be rejected in favour of the

alternative one (i.e., the performance of algorithms is significantly

different from each other). If the null hypothesis is rejected, we

use the post hoc Conover’s test for pairwise multiple comparisons.

Such a test is used to detect pairs of algorithms that are significantly

different. Finally, 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 obtained with the post hoc test are ad-
justed with the Holm-Bonferroni procedure to correct the statistical

significance level (𝛼 = 0.05) in case of multiple comparisons.
In the cases where we want to obtain a more detailed comparison

between two algorithms for a given subject, we use the Wilcoxon-

Mann-Whitney U-test to determine whether there is a statistically

significant difference and the Vargha-Delaney 𝐴12 effect size to
measure this difference (if any).

4.2 Results

Table 2 summarises the results of the experiment described in the

previous section. We report the overall statement coverage and

the rank of each algorithm, procured by the Friedman test based

on their average performance. Table 2 also reports the standard

deviation and confidence intervals (CI) using bootstrapping at 95%

significance level of the statement coverage achieved.

Among all the algorithms evaluated, NSGA-II + motif genes

(i.e., Sapienz) is the one that achieves the highest overall statement

coverage (47%) and CI. The 𝑝 −𝑣𝑎𝑙𝑢𝑒 obtained from the Friedman is

1.97e-09 . This means that we can reject the null hypothesis of the

Friedman test (i.e., there is at least one algorithm that differs from

the rest). Table 3 shows the rankings achieved by each algorithm for

every application. For example, for subject ArityNSGA-II achieved
the best statement coverage, while (𝜇, 𝜆) EA performed the worst

in terms of that metric.

Table 4 shows the 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 obtained by the post hoc Conover’s
test for pairwise comparison. These 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠 indicate whether
there is statistical significance or not for each pair of algorithms.

For example, although Table 2 shows that (𝜇 + 𝜆) EA achieved

higher ranking than Monotonic GA, Table 4 indicates that the

𝑝 − 𝑣𝑎𝑙𝑢𝑒 obtained for the post hoc Conover’s test is far greater
than 0.05. Thus, there is not enough evidence to support with

statistical confidence that the average for (𝜇 + 𝜆) EA is different

from Monotonic GA.

Figure 2 shows visually the overall statement coverage achieved

by each algorithm.

RQ1: What is the contribution ofmotif genes in

Sapienz effectiveness?

To answer this question, we conduct a pairwise tournament be-

tween NSGA-II with motif genes (i.e., Sapienz) and NSGA-II. Fur-

thermore, to understand whether motif genes contribute to major

gains (even without using an evolutionary algorithm), we also add

to the pairwise tournament Random Search and Random Search

with motif genes.

Table 5 summarises the results of the pairwise tournament. Given

a particular subject, Algorithm 𝑋 is considered to be better than

Algorithm 𝑌 for that subject if the result of the Wilcoxon-Mann-

Whitney U-test gives a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05 (i.e., we can say with sta-
tistical confidence that Algorithm 𝑋 is different from Algorithm 𝑌 )
and the Vargha-Delaney𝐴12 effect size is greater than 0.5. Colloqui-
ally, this means that Algorithm 𝑋 performs significantly better on

a higher number of comparisons than Algorithm 𝑌 . If the 𝑝 − 𝑣𝑎𝑙𝑢𝑒
of the U-test is greater or equal than 0.05, we can not conclude that
Algorithm 𝑋 is neither better nor worse than Algorithm 𝑌 . The
positions in the tournament are decided by ranking the differences

between the “Better than” and “Worse than” columns. For example,

Sapienz has a difference of 16 − 0 = 16, while Random Search with

motif genes has a difference of 10 − 3 = 7, which means the former

should be higher in the tournament than the latter.

We can see that the first position is assigned to Sapienz with a

significantly better performance in 16 out of 24 comparisons and an

average effect size of 0.86. Furthermore, in the remaining 8 of the
24 comparisons, Sapienz is not significantly worse. Surprisingly,

the second position goes to Random Search with motif genes. This

algorithm has a significantly better performance in 10 out of 24

comparisons and an average effect size of 0.90.
Overall, we can see in Table 5 a clear improvement of statement

coverage on those algorithms that include motif genes over the

vanilla version of those algorithms. In terms of statistical signifi-

cance, Table 4 shows there is enough statistical evidence to hold

that there is a difference between both: NSGA-II and NSGA-II with
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Table 2: Overall coverage, standard deviation, and the rank of each algorithm based on their average performance, which is statistically

significant according to the Friedman test (p-value is < 0.0001, full data is available on Table 3). For averaged coverage values we also report

confidence intervals (CI) using bootstrapping at 95% significance level.

Algorithm Ranking Mean Ranking SD
Overall

Coverage Mean Coverage SD CI

NSGA-II + MG (Sapienz) 1.25 0.71 47.87 17.22 [45.68, 50.06]

Random Search + MG 2.12 0.35 46.95 17.65 [44.71, 49.23]

NSGA-II 3.00 1.41 44.07 18.71 [41.70, 46.47]

Random Search 4.19 0.37 43.78 18.57 [41.46, 46.16]

(𝜇 + 𝜆) EA 5.12 1.36 41.79 17.79 [39.47, 44.06]

Monotonic GA 5.56 0.82 40.70 17.62 [38.46, 42.91]

(𝜇, 𝜆) EA 7.62 1.06 37.23 17.85 [35.00, 39.51]

Standard GA 8.00 0.76 34.49 19.43 [32.05, 36.96]

Steady State GA 8.12 0.83 33.23 19.80 [30.70, 35.74]

Table 3: Full ranking of algorithms for each subject.

(𝜇 + 𝜆) EA (𝜇, 𝜆) EA Monotonic

GA

NSGA-II NSGA-II

+ MG

(Sapienz)

Random

Search

Random

Search +

MG

Standard

GA

Steady

State GA

Arity 5.00 9.00 6.00 1.00 3.00 4.00 2.00 8.00 7.00

BookWorm 3.00 8.00 4.00 6.00 1.00 5.00 2.00 7.00 9.00

DroidSat 8.00 6.00 4.50 2.00 1.00 4.50 3.00 8.00 8.00

FillUp 5.00 7.00 6.00 3.00 1.00 4.00 2.00 8.00 9.00

JustSit 5.00 7.00 6.00 3.00 1.00 4.00 2.00 9.00 8.00

Kanji 5.00 8.00 6.00 3.00 1.00 4.00 2.00 7.00 9.00

L9Droid 5.00 7.00 6.00 3.00 1.00 4.00 2.00 9.00 8.00

Maniana 5.00 9.00 6.00 3.00 1.00 4.00 2.00 8.00 7.00

Mean 5.12 7.62 5.56 3.00 1.25 4.19 2.12 8.00 8.12

Table 4: Results of the post hoc Conover’s test for pairwise analysis. A 𝑝 − 𝑣𝑎𝑙𝑢𝑒 less than 0.05 for algorithms X and Y means there is enough

evidence to claim they are different with statistically significance.

(𝜇 + 𝜆) EA (𝜇, 𝜆) EA Monotonic

GA

NSGA-II NSGA-II

+ MG

(Sapienz)

Random

Search

Random

Search +

MG

Standard

GA

(𝜇, 𝜆) EA < 0.05 - - - - - - -

Monotonic GA 1.000 < 0.05 - - - - - -

NSGA-II < 0.05 < 0.05 < 0.05 - - - - -

NSGA-II + MG (Sapienz) < 0.05 < 0.05 < 0.05 < 0.05 - - - -

Random Search 0.410 < 0.05 0.058 0.141 < 0.05 - - -

Random Search + MG < 0.05 < 0.05 < 0.05 0.462 0.462 < 0.05 - -

Standard GA < 0.05 1.000 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 -

Steady State GA < 0.05 1.000 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 1.000

motif genes (i.e., Sapienz) and between Random Search and Ran-

dom Search with motif genes. We conjecture that this increment

is due to motif genes using a more compact representation than

atomic genes. In other words, a complex user pattern can be repre-

sented either with a sequence of 𝑁 atomic events or onemotif gene.

This means that, as long as that particular gene keeps propagating

across generations, the pattern will survive in the population. On

the other hand, if that same pattern was sprayed out into several

dozens of events, it would be easier for crossover and mutation

operators to break it and lose its benefits. In summary, a more com-

pact representation of test cases might help to trim the search space

and achieve higher statement coverage.

RQ1: Motif genes have a significant impact on Sapienz

effectiveness. In fact, both NSGA-II and Random Search improve

their effectiveness when test cases include motif genes.
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Figure 2: Overall coverage achieved by each algorithm. Middle line of each boxplot marks the median, black circles represent outliers, ★
symbol shows the mean, and the red line represents the mean of all coverages (41%).

Table 5: Pairwise comparison of algorithms with and without Motif Genes. “Better than” and “Worse than” give the number of comparisons

for which the best EA is statistically significantly (i.e., 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of Wilcoxon-Mann-Whitney U-test less than 0.05) better and worse,

respectively. Columns ̂𝐴12 give the average effect size.

Better Worse

Algorithm

Tournament
position

Overall
Coverage Mean than ̂𝐴12 than ̂𝐴12

NSGA-II + MG (Sapienz) 1.00 47.87 16/24 0.86 0/24 -

NSGA-II 3.00 44.07 1/24 0.66 10/24 0.07

Random Search + MG 2.00 46.95 10/24 0.90 3/24 0.32

Random Search 4.00 43.78 0/24 - 14/24 0.14

RQ2: What is the contribution of the NSGA-II

evolutionary algorithm in Sapienz effectiveness?

To answer this question, we conduct a pairwise tournament among

NSGA-II and the evolutionary algorithms presented in Section 2.

As a baseline for comparison, we also included Random Search to

the tournament.

Table 6 summarises the results of the pairwise tournament.

Among all the evolutionary algorithms evaluated, NSGA-II is the

one that achieves the highest overall statement coverage (44%). It

is also significantly better than the other algorithms in 36 out of

48 comparisons, and only worst in 2 out of 48. An averaged ̂𝐴12 of
0.88 means that in the comparisons for which NSGA-II is signifi-
cantly better than another algorithm, it obtains a highest statement

coverage in 88% of the repetitions.

This result is consistent with other studies such as the one per-

formed by Campos et al. [13] for Java unit test case generation

in which multi-objective algorithms such as MOSA (a variation

of NSGA-II) and DynaMOSA (a latter variation of MOSA) showed

higher coverage over single objective search-algorithms.

It is worth noticing that Random Search obtained the second-

best place in this pairwise tournament. What is more, the 𝑝 − 𝑣𝑎𝑙𝑢𝑒

obtained from the Conover’s post hoc test when comparing NSGA-

II vs Random Search is higher than 0.05. This means that there is
not enough evidence to reject the null hypothesis (i.e., that NSGA-

II is different from Random Search). To better understand what

is the magnitude of this difference between Random Search and

evolutionary algorithms, we conducted a more detailed comparison

and then calculated the average effect size. Table 7 shows the results

of this comparison. Figure 3 shows the results visually. As we can

see, NSGA-II is the only algorithm that achieves an average effect

size higher than 0.5, but there is no statistical significance.
In other words, Random Search is at least as good as NSGA-

II, Monotonic GA and (𝜇 + 𝜆) EA. For all the other evolutionary
algorithms, Random Search is better with statistical significance. In

summary, this means that EAs are not contributing substantially to

gain better statement coverage in Android test generation. This

result is also consistent with the study presented by Sell et al. [40]

for Android test generation in which single-objective and multi-

objective algorithms do not perform better than random algorithms,

and sometimes they even perform slightly worse.

In order to optimise a population towards a given objective,

evolutionary algorithms require to evolve as many generations as
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Table 6: Pairwise comparison of evolutionary algorithms and Random Search. “Better than” and “Worse than” give the number of comparisons

for which the best EA is statistically significantly (i.e., 𝑝−𝑣𝑎𝑙𝑢𝑒 ofWilcoxon-Mann-Whitney U-test less than 0.05) better andworse, respectively.

Columns ̂𝐴12 give the average effect size.

Better Worse

Algorithm

Tournament
position

Overall
Coverage Mean than ̂𝐴12 than ̂𝐴12

NSGA-II 1.00 44.07 36/48 0.88 2/48 0.31

Random Search 2.00 43.78 33/48 0.90 1/48 0.34

Standard GA 6.50 34.49 1/48 0.73 30/48 0.15

Monotonic GA 4.00 40.70 17/48 0.78 14/48 0.14

Steady State GA 6.50 33.23 1/48 0.68 30/48 0.09

(𝜇 + 𝜆) EA 3.00 41.79 24/48 0.79 13/48 0.21

(𝜇, 𝜆) EA 5.00 37.23 5/48 0.83 27/48 0.18

Figure 3: Effect size ̂𝐴12 of EA X vs Random Search. Middle line of each boxplot marks the median, black circles represent the outliers, �
represents the mean of a significant effect size greater than 0.5 (i.e., EA X performs significantly better than Random Search), � the mean of a

significant effect size lower than 0.5 (i.e., EA X performs significantly worse than Random Search), × the mean of a no significant effect size.

Table 7: Comparison of evolutionary algorithms and Random

Search. Statistically significant effect sizes are shown in bold.

Random Search

Algorithm

Overall
Coverage

Mean ̂𝐴12 𝑝

NSGA-II 44.07 0.56 0.141

Random Search 43.78 - -

Standard GA 34.49 0.12 < 0.05
Monotonic GA 40.70 0.23 0.058

Steady State GA 33.23 0.08 < 0.05
(𝜇 + 𝜆) EA 41.79 0.30 0.410

(𝜇, 𝜆) EA 37.23 0.15 < 0.05

possible. The cost of a fitness evaluation directly affects the num-

ber of generations the EA can achieve. In particular, for Android

test generation, in order to obtain statement coverage for a given

individual, evolutionary approaches need to: push the test case to a

device/emulator, start the application, run test case, gather fitness

information and pull it from device/emulator. In [40], Sell et al. sug-

gested that high execution costs hamper any meaningful evolution

for search algorithms. In our study, we observed that the fitness

evaluation might take up to 60 seconds for a test case, depending

on its length. Overall, this resulted in approximately 30 generations

for each EA on average. Having a population of 50 individuals, the

maximum number of fitness evaluations achieved within the time

budget of 2 hours was on average 50×30 = 1.500 fitness evaluations.
Similar execution times can also be found in the work of Vogel et

al. [45], where authors report execution times of 101 minutes on

average, and up to 5 hours, for running 10 generations of Sapienz

on one app (using 10 Android emulators).

Finally, Table 4 indicates that there is not enough evidence to

hold with statistical significance that NSGA-II with motif genes

(i.e., Sapienz) is different from Random Search with motif genes.

RQ2: NSGA-II evolutionary algorithm has amarginal impact on

Sapienz effectiveness. Although, NSGA-II is better than the other

evolutionary algorithms considered, Random Search is at least as

good as NSGA-II.
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4.3 Threats to Validity:

Threats to internal validity might result from how the empirical

study was carried out. Since all the studied algorithms are affected

by non-determinism, we ran 30 repetitions of each experiment with

different random seeds and followed rigorous statistical procedures

to evaluate the results. To avoid possible confounding factors when

comparing different algorithms, they were all implemented on the

same tool. Since parameter tuning can affect the performance of al-

gorithms, we used the same default values for all parameters across

experimentation. These values were chosen based on the paper

presenting Sapienz [33]. We used roulette selection as a selection

function for the single-objective EAs. Although the rank selection

function is preferred to avoid premature convergence [11], the aver-

age number of generations performed by the single-objective EAs

in our study was 30, which mitigates this possible threat.

Another possible threat to internal validity might come from

the fact that we used for our experiments a version of Sapienz that

might be different from the one that is currently under development

at the industrial setting (i.e., Facebook).We chose to use that version

(although marked as “out-of-date and no longer supported” by their

authors) because it is nevertheless the latest publicly available

version used for evaluation by Mao et al. [33].

We measured the success of each algorithm in terms of state-

ment coverage. While higher coverage is a desirable goal for test

generation, it is only a proxy for the more important goal of fault

detection. Therefore, there is a threat to construct validity caused by

how we determine which algorithm is better. However, we believe

that this test adequacy criterion is still a reasonable indicator of the

effectiveness of different search-based algorithms.

Threats to external validity come from the fact that, due to the

very large number of experiments, we only used 8 subjects as case

studies, which still took a long time even when using a cluster of

computers. To avoid selection bias, we explicitly decided to include

only those apps that have been previously used in a statistical

analysis of Sapienz (i.e., Study #2 in Mao et al. [33]). Instead of

including new evaluation subjects, we opted to favour a larger

number of repetitions (30 per combination of subject & algorithm)

to gain better statistical significance. Nevertheless, it is important

to note that another selection of subjects might result in different

conclusions.

For the selection of algorithms, we considered the algorithms

studied in [14]. Some of the multi-objective algorithms (e.g., MOSA

and DynaMOSA) had to be excluded from the study since they

were not designed to work exclusively with the statement coverage

provided by EMMA. Although we included one multi-objective

algorithm (i.e., NSGA-II), including further multi-objective algo-

rithms might also result in different conclusions. In future work,

we plan to compare the mentioned algorithms as well as other ones

such as SPEA-2 [29], NSGA-III [18] and MIO [9].

5 RELATEDWORK

Although several studies exist proposing new techniques and tools

for automatic Android test generation [5, 7, 25, 31–33], to the

best of our knowledge, none of these works performs a thorough

analysis of the specific features contributing to the increment or

decrement of their effectiveness. In particular, Mao et al. perform a
study [33] that shows statistical evidence that Sapienz outperforms

both Monkey [5] and Dynodroid [31], but they do not deepen into

the causes of the observed gains.

Choudhary et al. [16] compare several test generation tools

for Android on a considerable number of open source applica-

tions. The tools considered in their study are: Monkey [5] and

Dynodroid [31], EvoDroid [32], GUIRipper [7], PUMA [25],

A3E-Depth-first [12], SwiftHand [15], JPF-Android [44], and

ACTEve [8]. Although it is an impressive amount of empirical work

they do not focus on the specific contributions of the underlying

algorithm used by each of the techniques.

Wang et al. [46] also compare several state-of-the-art techniques

on industrial applications. The tools evaluated in their study are:

Monkey [5], WCTester [47, 48], Sapienz, Stoat [42], DroidBot [30]

and A3E-Depth-first. The study does not achieve statistical confi-

dence: they only use a few repetitions to compensate for the random

nature of algorithms used by the tools.

Campos et al. [13] conducted an empirical study comparing mul-

tiple evolutionary algorithms (including some multi-objective) and

two random approaches for Java unit test generation. The study

was applied to a selection of non-trivial open-source classes. They

show that the choice of algorithm can have a substantial influence

on the performance of Whole Test Suite optimisation. Panichella et

al. [37] also performed an empirical study with different evolution-

ary algorithms for Java unit test generation and confirmed several

of the findings in [13]. Our work also analyses evolutionary and

random algorithms but in the context of Android apps, paying

special attention to the effect of using motif genes.

Sell et al. [40], also present a study comparing different algo-

rithms for Android test generation, but these algorithms are eval-

uated on the testing tool MATE [19]. As we have stated before,

MATE uses a widget-based representation of individuals, while

Sapienz does not. This means that evolutionary operators such as

crossover and mutation are different between both tools, and might

influence results obtained. What is more, some classic genetic and

evolutionary algorithms in our study are not included in the work

by Sell et al. [40], namely: Monotonic GA, Steady-State GA, (𝜇 + 𝜆)
EA, (𝜇, 𝜆) EA. Finally, the work by Sell et al. [40] uses mainly test
cases instead of test suites and does not study the effect of motif

genes.

6 CONCLUSIONS

In this work, we aimed to deepen into how the main features of

Sapienz (namely, the NSGA-II algorithm and the representation of

individuals using motif genes) impact over effectiveness by con-

ducting an extensive empirical study using experimental subject

previously used in the related literature.

Our study shows that, for the case of Android test generation,

the multi-objective NSGA-II algorithm outperforms other evolu-

tionary algorithms. However, we also found out that NSGA-II is not

distinguishable with statistical confidence from Random Search,

which casts doubts about the actual effectiveness of multi-objective

evolutionary algorithms for Android test generation. In terms

of the impact of motif genes, our experimental results provide

evidence showing that NSGA-II and Random Search performed

statistically better when motif genes were included. Both findings

suggest that the Sapienz’s improvement on effectiveness is more
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attributable to adding motif genes rather than to the use of a par-

ticular choice of multi-objective evolutionary algorithm. Therefore,

intra-tool comparisons (as the ones performed in this article and

in [40]) should be preferable over cross-tool comparisons (as the

one performed by Mao et. al. [33]) whenever possible. In other

words, different techniques should be compared using the same

tool, aiming to avoid conflating factors behind changes in test suite

effectiveness.

As further work, we plan to conduct a large cross-tool empirical

study including several Android test generators to assess how

sensitive algorithms are to implementation details.
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