
WallMauer: Robust Code Coverage Instrumentation
for Android Apps

Michael Auer
University of Passau
Passau, Germany

Iván Arcuschin Moreno
University of Buenos Aires
Buenos Aires, Argentinia

Gordon Fraser
University of Passau
Passau, Germany

ABSTRACT

Code coverage is the primary metric used to assess the quality
of test suites, and it is the foundation of many automated tech-
niques ranging from fault localization to search-based optimization
approaches. Code coverage is measured by inserting probes into
programs which keep track of executed code when running tests.
While this can be easily done in many testing domains, it remains a
challenging task for Android apps, mainly due to the nature of the
Dalvik bytecode used for Android apps: First, the internal handling
of registers inhibits common types of probes. To circumvent this
problem, existing tools often rely on conversion of Dalvik bytecode
to standard Java bytecode or source code, but during the conver-
sion back to Dalvik bytecode errors and inconsistencies may occur.
Furthermore, a strict limit of the number of methods and classes
contained in a single archive of Dalvik bytecode (DEX file) requires
spliting apps into multiple such DEX files (multidex approach),
which is rarely supported by existing coverage instrumentation
frameworks. This is not only a problem when trying to instrument
regular multidex apps, but the coverage instrumentation itself in-
creases the number of methods, potentially requiring a multidex
solution even for apps that would otherwise fit in a single DEX
file. In this paper we present WallMauer, a new code coverage
tool that overcomes these limitations: It supports multidex, and
avoids inconsistencies by rigorously instrumenting Dalvik byte-
code directly. WallMauer solely requires an APK file as input and
as such it can be easily integrated into any existing testing envi-
ronment. Using a set of 1000 open source apps from the F-Droid
repository we demonstrate that WallMauer is extremely robust,
successfully instrumenting more than 99% of apps, more than any
other state-of-the-art instrumentation framework.

KEYWORDS

Instrumentation, Code Coverage, Android

ACM Reference Format:

Michael Auer, Iván Arcuschin Moreno, and Gordon Fraser. 2024. Wall-
Mauer: Robust Code Coverage Instrumentation for Android Apps. In 5th
ACM/IEEE International Conference on Automation of Software Test (AST
2024) (AST ’24), April 15–16, 2024, Lisbon, Portugal. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3644032.3644462

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AST ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0588-5/24/04
https://doi.org/10.1145/3644032.3644462

1 INTRODUCTION

Code coverage is one of the central metrics in software testing. It
serves not only to assess the quality of tests, but also to inform
analysis techniques such as fault localization, or to guide search-
based algorithms towards generating coverage-optimized test suites
(e.g., [9, 23, 29]). Measuring code coverage consists of inserting
measurement probes into a program at the level of granularity
desired (e.g., statements or methods), and then running the tests
on the instrumented program. The resulting coverage information
collected by the probes can then be visualized for users or processed
by automated techniques. While this process can easily and reliably
be implemented in many domains, it is challenging to apply on
Android apps, in particular when the source code is not available.

Adding coverage instrumentation toAndroid appswithout source
code is a common scenario for many applications, in particular in
research. Consequently, a number of such black-box code coverage
tools have been proposed for Android. Some of these consider only
a coarse level of granularity such as method coverage, since the
instrumentation required for this is simpler. Those that target finer
granularity face challenges that ultimately mean they will only
work on a subset of apps successfully. There are multiple reasons
for this, rooted in the Dalvik bytecode used for Android apps:

• Dalvik bytecode imposes harsh limitations on how instruc-
tions can leverage registers, which makes modifications to
the bytecode complicated. Instrumentation tools that fail to
adhere to these rules may produce malformed bytecode.

• To avoid this problem, some tools perform their instrumen-
tation at a different level of abstraction, e.g., at the Java
bytecode level or source code level. However, the conver-
sion from Dalvik bytecode to another abstraction and the
corresponding re-conversion later on is in most cases not
lossless and may again result in bytecode that is corrupted
or diverges from the original code.

• The biggest challenge is the 65K method limit imposed on
DEX files, i.e., binaries containing the executable Dalvik
bytecode in the form of classes and methods. If this limit is
exceeded, the bytecode needs to be split into multiple DEX
files. This support was introduced with API level 21 and is
known as multidex [5]. Even if existing Android apps do not
use a multidex approach already, the instrumentation itself
is likely to introduce additional classes and methods poten-
tially requiring a split of the modified DEX file. However
most state-of-the-art instrumentation tools do not support
multidex, which limits their applicability.

To overcome these issues, in this paper we introduce Wall-
Mauer, a tool that overcomes these challenges by (1) directly oper-
ating at the Dalvik bytecode level rather than requiring a conver-
sion to another abstraction level, (2) following the Dalvik bytecode

34

2024 IEEE/ACM International Conference on Automation of Software Test (AST)

https://doi.org/10.1145/3644032.3644462
https://doi.org/10.1145/3644032.3644462
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3644032.3644462&domain=pdf&date_stamp=2024-06-10

AST ’24, April 15–16, 2024, Lisbon, Portugal Auer et al.

specification very strictly, thus producing only valid bytecode, and
(3) supporting multidex out of the box, thus being applicable to any
apps. WallMauer comes as a Java-based command-line application
and requires nothing more than the APK file of an app to instru-
ment, i.e., the standard Android package format. WallMauer can
be easily integrated into any existing testing environment and has
already been successfully applied in combination with the open-
source test generator Mate [14] by instrumenting hundreds of
Android applications in multiple empirical studies, e.g., [11, 12].

In detail, this paper makes the following contributions:
• We provide a robust code coverage instrumentation tool
called WallMauer for Android apps that requires only the
APK file as input and can be easily integrated into any exist-
ing testing environment.

• We empirically demonstrate the robustness of WallMauer
on a set of 1000 F-Droid applications and compare it to state-
of-the-art tools ACVTool and COSMO.

• We empirically evaluate the overhead induced by the instru-
mentation and show it is able to compete with ACVTool
and COSMO.

• We demonstrate that the reported coverage is compliant with
the results obtained from ACVTool and transitively also to
COSMO.

• We make WallMauer publicly available on GitHub (https:
//github.com/mate-android-testing/wallmauer) to support
the Android testing and research community.

The results of our empirical study show that WallMauer out-
performs state-of-the-art tools ACVTool and COSMO in terms of
successfully instrumented apps, while the overhead induced by
the instrumentation is largely negligible and magnitudes lower
than both other tools. In detail, WallMauer can produce an instru-
mented APK for 999 out of 1000 F-Droid applications from which
998 remain healthy after being automatically tested, while ACV-
Tool manages to instrument 885 apps from which 638 could be
successfully explored, while COSMO can handle 891 apps of which
793 appear to be functional after being tested.

2 BACKGROUND

2.1 Code Coverage Analysis

The most common way to determine code coverage is by instru-
menting the code of the program under test by inserting probes at
specific locations, depending on the targeted level of granularity,
e.g., at method, basic block or statement level [19]. The tests are
then executed on the resulting instrumented version of the pro-
gram, while the probes collect information about which parts of the
code were covered and typically store this information in trace files.
From these, a code coverage report can be generated and visualized
for users, and the information can also directly inform other tools
and approaches, such as automated test generation tools.

The instrumentation can be done at different levels of abstraction,
e.g., on source code or bytecode level. It is important to note that the
reported code coverage measured at different abstraction levels may
not be interchangeable [16, 26], e.g., a single source code statement
typically corresponds to multiple bytecode instructions. Besides
technical questions, the choice of abstraction level is also influenced
by the targeted application of the code coverage instrumentation:

While it is reasonable to assume that a developer running unit
tests on their own code has the source code at hand, such that
it can be directly instrumented at source level, there are many
scenarios where availability of source code cannot be assumed. For
example, many testing or fuzzing scenarios are applied to Android
apps packaged as APK files, with only Dalvik bytecode available.
This is also the scenario we consider in this paper. Unfortunately,
instrumenting at bytecode level on Android is non-trivial.

2.2 Android Components

Android apps are composed of four main types of components,
Activities, Services, Broadcast Receivers and Content Providers [1]:
Activities are the main entry point for the user. They are responsible
for displaying the user interface and handling user interactions (e.g.,
login screen). Services are background components that perform
long-running operations without a user interface (e.g., file down-
load). Broadcast Receivers are components that receive and react to
system-wide broadcast announcements (e.g., low battery). Content
Providers are components that manage access to a structured set
of data. They encapsulate the data and provide mechanisms for
defining data security (e.g., contacts). Since all of these types of
components consist of source code that may affect a program’s
behaviour and may be targeted by tests, coverage instrumentation
needs to be applicable to any of them.

2.3 Compilation Process

Android development officially supports Java and Kotlin as pro-
gramming languages. The Android SDK provides a set of libraries
and tools that are required to build, test and debug Android apps.
The compilation process consists of two steps: First, the Java or
Kotlin source code is compiled to Java bytecode. Second, the Java
bytecode is translated to Dalvik bytecode. The Android platform
then runs this Dalvik bytecode in the Android Runtime (ART) en-
vironment. ART is a register-based virtual machine that executes
Dalvik bytecode. Consequently, collecting coverage information
requires probes within the executed Dalvik bytecode, but these
probes may be inserted at any abstraction level from source code to
Dalvik bytecode directly. If source code is not available, Dalvik byte-
code can be converted back to Java bytecode, although a round-trip
conversion back to Dalvik may not be lossless.

2.4 APK Files

Android applications are distributed as APK (Android Package) files.
An APK file is a ZIP archive that contains the Dalvik bytecode, the
Android manifest and all resources of the app [8]. The Android
manifest is an XML file that contains information about the app
and its components. It also declares the list of permissions that the
app requires to run. Permissions are used to protect sensitive data
and functionality. For example, the READ_CONTACTS permission is
required to read the user’s contacts.

2.5 Dalvik Bytecode

During the compilation process, Java bytecode is compiled into
Dalvik bytecode. Although converting back from Dalvik to Java
bytecode is possible, this transformation is not lossless and the
resulting Java bytecode may not be equivalent to the original one,

35

https://github.com/mate-android-testing/wallmauer
https://github.com/mate-android-testing/wallmauer

WallMauer: Robust Code Coverage Instrumentation

for Android Apps AST ’24, April 15–16, 2024, Lisbon, Portugal

.method private interpretBMI(D)Ljava/lang/String;

.registers 6

const-wide v0, 0x4032800000000000L

cmpg-double v2, p1, v0

if-gez v2, :cond_1

const-string p1, "You are underweight"

return-object p1

:cond_1

const-wide/high16 v0, 0x4039000000000000L

cmpg-double v2, p1, v0

if-gez v2, :cond_2

const-string p1, "You are normal weight"

return-object p1

:cond_2

const-string p1, "You are overweight"

return-object p1

.end method

Listing 1: Smali representation of an arbitrary method.

e.g., switch tables are encoded differently and cannot be mapped 1:1.
Dalvik bytecode can also be converted to Smali, a human-readable
representation of Dalvik bytecode used by reverse engineers to
analyze Android apps.

Inside APKs, Dalvik bytecode is stored in DEX (Dalvik Exe-
cutable) files. A DEX file contains a set of classes and their asso-
ciated methods. One of the limitations of this format is that each
DEX file can only contain up to 65,536 methods (known as the 65K
method limit) [5]. To overcome this limitation, the Android plat-
form allows developers to split the Dalvik bytecode into multiple
DEX files inside an APK. This support is known as multidex.

Unlike the Java Virtual Machine (JVM), which is stack-based,
the ART environment is register-based [2], i.e., the values of the
variables used by the program are stored in a set of registers instead
of a stack. The ART environment has 32-bit wide registers to store
primitive types like integers or floating-point numbers. For 64-bit
data types like double or long two adjacent registers are required.
The maximal number of registers per method is limited to a number
of 65,536. However, due to optimizations most instructions can
only reference the first 256 registers or even the first 16 registers,
e.g., the regular invoke instruction can only address the first 16
registers. While many instructions disregard the register type, there
are certain instructions that assume a specific type, e.g., the move-
object instruction is dedicated to shift object types while the regular
move instruction can shift any primitive type.

There are certain instructions that always come paired, e.g.,
any invoke instruction that is expected to return some result other
than void is directly followed by a move-result instruction. It is not
allowed to place any instructions in between.

Each method needs to declare the number of required registers
where a distinction is made between local and parameter registers.
The local registers come first and are denoted v0, v1, ... whereas the
parameter registers follow and are denoted as p0, p1, Consider
the Smali representation of an arbitrary method in Listing 1: The
method declares six registers where three are local and three are
parameter registers. It takes an explicit double parameter (D) and
since the method is not static, it also has an implicit parameter
that contains the this-reference, i.e., p0 refers to the this-reference
and p1 and p2 contain the upper and low half of the double value,
respectively. Note that p2 is never explicitly referenced in the code
since any instruction involving a wide type like double or long only
address the upper half, i.e., p1 in the example. Likewise, the local
register v1 containing the lower half of a long value is never ex-
plicitly used but instead only v0. Although the local and parameter
registers are differently denoted they are internally labelled from 0
to N. That means the parameter register p0 could also be regarded
as v4, p1 as v5 and so on.

Any modifications to the bytecode need to ensure that the indi-
vidual instructions still reference only eligible registers. For exam-
ple, the introduction of an additional local register would increase
the internal ids of the parameter registers by one. If any of the
parameter registers now has an id greater than 16, corresponding
invoke bytecode instructions would not be valid anymore. In this
case the parameter register needs to be first shifted to a register with
a lower id before being used by the invoke instruction. This makes
the instrumentation at the Dalvik bytecode a complex endeavor.

2.6 Android Coverage Instrumentation

Several tools have been proposed over the years for measuring code
coverage of Android apps. These tools can be classified into two
categories: White-box instrumentation and black-box instrumen-
tation [22]. White-box instrumentation tools, e.g., Emma [4], Ja-
CoCo [7] or the IntelliJ IDEA code coverage runner [6] assume
the presence of the source code and modify either the source code
directly or the intermediate Java bytecode. In contrast, black-box
instrumentation tools like InsDal [20], CovDroid [28] or ACV-
Tool [22] assume only the APK file as input and directly operate
on the Dalvik bytecode or any intermediate representation, e.g.,
Smali. In this paper we focus on black-box approaches which do
not make the assumption of having source code available. Conse-
quently, these approaches need to be able to insert coverage probes
into Dalvik bytecode.

There are two main approaches for instrumenting Dalvik byte-
code [17]: The direct-call approach, e.g, used by InsDal [20], inserts
probes which, upon execution, directly invoke the same method
with a different argument, e.g., a string, to identify which basic
block or statement was covered. However, since the regular invoke
instruction can only reference the first 16 registers, it might be
necessary to shift registers such that the arguments to the invoke
instruction are stored within those first 16 registers.

To circumvent this problem, one can build the instrumentation
upon the indirect-call approach, e.g., used by Huang et al. [17]. Here,
the probe consists of the invocation of a distinct parameterless
method for each location, which in turn then calls the general
probing method with an argument to identify the covered basic

36

AST ’24, April 15–16, 2024, Lisbon, Portugal Auer et al.

Figure 1: WallMauer’s workflow.

block or statement. This avoids shifting registers at the original
location but requires for each basic block or statement an additional
method and imposes consequently a further overhead. Moreover,
since each DEX file can only contain up to 65K methods, a split
into multiple DEX files might be required.

Finally, an alternative approach implemented for instance by
COSMO [24], instruments the Java bytecode rather than the Dalvik
bytecode. This bypasses the above-mentioned restrictions, but the
conversion process is not completely lossless and the re-translation
may thus fail or lead to code different to the original one. For
example, switch-tables are differently encoded by Dalvik and Java
bytecode and therefore cannot be mapped 1:1.

3 DALVIK BYTECODE COVERAGE

INSTRUMENTATION

The general workflow of theWallMauer approach consists of three
sequential phases as illustrated by Fig. 1. First, in the offline phase
(Section 3.1) the plain APK is decoded into the manifest and the
Dalvik bytecode. Both artifacts are modified and repackaged into an
instrumented APK. In addition, a file containing the instrumented
basic blocks is produced, which is later required for the coverage
computation. The instrumented APK is installed on a device dur-
ing the online phase (Section 3.2) and explored either manually
or in an automated fashion. Once the testing is completed, a file
containing the visited basic blocks (traces) can be pulled from the
device. Together with the file obtained during the instrumentation
that contains the instrumented basic blocks a fine-grained code
coverage report can be generated in the report phase (Section 3.3).

3.1 Offline Phase

In the offline phase the actual instrumentation takes place. Similar
to ACVTool [22] and COSMO [24] we insert probes, but do so
directly into the Dalvik bytecode and not the Smali representation
or the Java bytecode, respectively.

Consider the instrumented method illustrated in Listing 2. The
colored parts highlight the changes induced by the instrumentation.
Our instrumentation requires two additional local registers, thus
the number of registers in the first line is increased by two. To
ensure that instructions can still address the parameter registers,
we shift them to the left by two positions. This is highlighted by the
first three instructions in the example (line 2–4). The this-reference
originally stored in the register p0 is moved to v2, while the two
double values originally stored in p1 and p3 are moved to v3 and
p1, respectively. This shifting ensures that the original instructions
still reference valid registers, and in addition the newly inserted
registers are located at the end of the register stack, i.e., p3 and p4
can be freely used for our purposes.

The next two instructions (line 5–8) essentially represent our
inserted probes at the beginning of each basic block. We load a
string constant that uniquely identifies the given basic block into
the free register p3. Afterwards, we invoke the static method trace of
the Tracer class with the trace stored in the register p3. Note that the
usage of the invoke-static/range instructions allows addressing up
to 65536 registers in contrast to the regular invoke-static instruction,
which is limited to the first 16 registers. The string constant used to
identify a basic block (line 5–6) does not only describe the location
of the basic block (first number) but also its size in terms of bytecode
instructions (second number). This information allows us to actually
compute line coverage over the bytecode instructions.

In most cases this rather simple probe is sufficient to track code
coverage. However, there are certain edge cases that require a more
comprehensive probe, consider for instance Listing 3. Assume that
in the artificial example a new basic block is defined within the
try block (line 4–10). In the regular case we would place our probe
at the beginning of this block, i.e., at line 5 onwards. However,
certain restrictions apply within try-catch blocks. In particular,
the bytecode verifier checks at the beginning of each catch block
(line 13) whether each register type is consistent throughout the
try block, i.e., through all possible control flow paths the register
must have the same type, otherwise the register state is said to be
conflicted and the verifier would reject the code. Since the inserted
invoke-static/range as part of our probe can theoretically throw an
exception, an additional control flow path is introduced that may
lead to a conflicted register state. To overcome this issue we use
the same trick as ACVTool to bypass the verifier: We place our
probe at the very end of the method (line 22–25) and insert a goto
instruction at the beginning of the basic block (line 5) instead. The
goto redirects the control flow to the end of the method (line 21),
executes the probe and jumps back to the basic block (line 7) using
another goto instruction (line 26). Since the bytecode verifier does
not resolve such jumps it does not report a potentially conflicted
register state, and the code can be successfully executed at runtime.

Another issue arises when a register state is conflicted at the
beginning of a method. Such a register state is not forbidden per se,
but one must re-initialize the register content before the register
can be read (moved). This is accomplished by line 2 in Listing 3
before line 3 actually reads the value. We can use the value 0, since
this has the same internal representation for each data type.

A further restriction shown in the given example is that probes
cannot be placed in front of move-exception instructions (line 14)

37

WallMauer: Robust Code Coverage Instrumentation

for Android Apps AST ’24, April 15–16, 2024, Lisbon, Portugal

.method private calculateBMI(DD)D

1 .locals 4

2 move -object/from16 v2, p0

3 move -wide/from16 v3, p1

4 move -wide/from16 p1, p3

5 const -string p3, "Lcom/zola/bmi/BMIMain;

6 ->calculateBMI(DD)D->0->7"

7 invoke -static/range {p3 .. p3},

8 LTracer;->trace(Ljava/lang/String ;)V

9 const-wide v0, 0x4001a305532617c2L

10 div-double/2addr v3, v0

11 const-wide v0, 0x3f9a027525460aa6L

12 mul-double p1, p1, v0

13 div-double/2addr v3, p1

14 div-double/2addr v3, p1

15 return-wide v3

16 .end method

Listing 2: Simple instrumentation probe.

although the catch block defines a new basic block. In this case, we
place a probe directly afterwards (line 15–17).

The static Tracer class injected alongside with the probes is im-
plemented as a broadcast receiver and is responsible for collecting
the generated traces. Upon receiving a particular broadcast message,
the collected traces are dumped to the devices’ external storage.
The class is registered in the manifest file alongside with the per-
mission to write to the external storage. In case the permission is
already present but only granted up to a specific API level, we re-
move the corresponding android:maxSdkVersion attribute from the
permission tag. In order to avoid that traces are lost on unexpected
app crashes, the Tracer class overwrites the uncaught exception
handler,1 which in turn dumps the collected traces upon a crash.

3.2 Online Phase

After the installation of the instrumented APK through the com-
mand line the app can be either explored manually or through an
automated approach. In fact, any existing testing framework can
be used for this purpose. As long as the exploration runs the Tracer
class keeps collecting traces in the form of visited basic blocks (as
injected during the instrumentation) in a set data structure, i.e.,
a trace looks identical to the string constant passed to the trace
method. Once a pre-defined limit of traces is reached (currently set
to 5000), the Tracer automatically dumps the collected traces to a
file on the external storage. This intermediate dumping ensures that
we do not overload the AUT while at the same time too frequent
writes, e.g., after receiving a new trace, are avoided through the
trace recording. Once the exploration is completed, we can append
the remaining traces to the same file by invoking a broadcast with
the action STORE_TRACES from the command line. If the AUT
crashes during the exploration, the overridden exception handler
by the Tracer class takes over and dumps the currently recorded

1https://developer.android.com/reference/java/lang/Thread.
UncaughtExceptionHandler

.method private onChange(Z)V

1 move -object/from16 v3, p0

2 const/4 p1, 0x0

3 move/from16 v4, p1

4 :try_start_0

5 goto /32 :goto_0

6

7 :goto_1

8 invoke-direct v3, Lsl/ShoppingList;

9 ->writeAllUnsavedChanges()V

10 :try_end_0

11 .catch Ljava/io/IOException;

12 {:try_start_0 .. :try_end_0} :catch_0

13 :catch_0

14 move-exception v0

15 const -string p0, "Lsl/ShoppingList;

16 ->onStop ()V->38->7"

17 invoke -static/range {p0 .. p0},

18 LTracer;->trace(Ljava/lang/String ;)V

19 return-void

20

21 :goto_0

22 const -string p0, "Lsl/ShoppingList;

23 ->onStop ()V->36->2"

24 invoke -static/range {p0 .. p0},

25 LTracer;->trace(Ljava/lang/String ;)V

26 goto /32 :goto_1

27 .end method

Listing 3: Complex instrumentation probe.

traces to the same file. The online phase ends with pulling the traces
file from the external storage through the command line.

3.3 Report Phase

Together with the traces file from the online phase and the basic
blocks file obtained during the offline phase, WallMauer can gen-
erate a code coverage report. Each trace records not only a visited
basic block per method but also its size in terms of bytecode in-
structions, while the basic blocks file records the same information
for all instrumented basic blocks. This allows us to compute line
coverage at any level of abstraction, e.g., at method level. The out-
put produced by WallMauer is currently a textual listing per class
of the achieved line coverage, as well as the overall line coverage.

3.4 Architecture & Instrumentation Modes

The WallMauer tool is designed as a multi module Java command
line application that consists of two parts: The instrumentation
library that takes as input the plain APK and produces an instru-
mented APK alongside with the basic blocks file and the code cover-
age report generation library that takes the traces and basic blocks
files to produce a fine-grained coverage report. Our implementation

38

https://developer.android.com/reference/java/lang/Thread.UncaughtExceptionHandler
https://developer.android.com/reference/java/lang/Thread.UncaughtExceptionHandler

AST ’24, April 15–16, 2024, Lisbon, Portugal Auer et al.

builds largely upon the following three libraries: Apktool2 to decode
and repackage APKs, dexlib23 to modify the Dalvik bytecode and
multidexlib24 to read from and write to multiple DEX files with
automatic handling of multidex upon reaching the 65K method
limit per DEX file.

WallMauer by default instruments at the basic block level to
obtain line coverage but can be configured to instrument at method
or branch level to report method or branch coverage, respectively.
The instrumentation approach for these two modes is identical ex-
cept that only a subset of probes needs to be inserted, thus having
a lower overhead in general. Moreover, WallMauer can be config-
ured to apply the instrumentation either to all classes, or, by default
a lightweight mode is used in which only core application classes
are instrumented. Here, we follow the typical convention that core
application classes reside within the package or any subpackages
described by the package name attribute listed in the manifest. Ad-
ditionally, we whitelist the package or any subpackages the main
activity resides in, and we exclude the untraceable resource class
R.java5 as well as the untraceable BuildConfig.java6 class. This fur-
ther reduces the overhead induced by the instrumentation, and is
based on the observation that app testers are primarily interested
in the coverage of the core application classes, rather than 3rd party
libraries or Android-specific classes. Moreover, APKs often include
classes or methods as part of dependencies that are not used by the
application, effectively making them uncoverable.

3.5 Usage

The instrumentation of the APK happens by invoking java -jar in-
strument.jar with the respective APK that should be instrumented.
(If you want to use the lightweight instrumentation mode append
the flag –only-aut.) This will produce the instrumented APK and
a file called blocks.txt that contains all instrumented basic blocks.
This file is then later required for the coverage computation. After
the instrumentation, one has to re-align and re-sign the APK. This
can be accomplished by using the build tools zipalign and apksigner
that come shipped with the Android SDK. Now, the instrumented
APK should be installed on an emulator or a real device using for
instance the command adb install. After that, the app can be ex-
plored manually or in an automated fashion. Once the exploration
is completed, a broadcast needs to be sent to dump the collected
traces to the external storage of the emulator or real device, respec-
tively. This can accomplished by invoking adb shell am broadcast -a
STORE_TRACES. Then, one can pull the traces to the local filesystem
by calling adb pull storage/emulated/0/traces.txt. Together with pre-
viously acquired blocks.txt file the coverage report can be generated
by invoking java -jar coverage.jar blocks.txt traces.txt.

3.6 Limitations

Since we unpack and repackage an APK during instrumentation,
we need to re-sign it at the end. However, certain apps may employ
some kind of anti-tampering techniques that in turn block modified
APKs either completely or let them run only in a degraded mode.
2https://github.com/iBotPeaches/Apktool
3https://github.com/google/smali
4https://github.com/DexPatcher/multidexlib2
5https://developer.android.com/reference/android/R
6https://developer.android.com/reference/androidx/media3/database/BuildConfig

This limitation applies to all instrumentation tools. We rely upon
the correct functioning of apktool to decompile and repackage an
APK, which applies to all instrumentation tools that operate in a
black-box manner, i.e., use the APK file as input. However, recent
improvements of apktool have reduced related errors to a minimum,
such that this limitation can be neglected. Due to some restrictions
in the Dalvik bytecode, we can only instrument methods that use
less than 255 registers in total. In particular, we insert two additional
local registers and the usage of the const-string instruction to hold
the trace does not allow specifying a register with an id greater
than 255. However, this scenario applies to less than 0.1% in our
experiment data set and is likely uncommon. Moreover, we could
circumvent this limitation completely by using the indirect-call
strategy, i.e., injecting a parameterless static method as probe, which
in turn calls the trace method of our Tracer class. Since our tool can
handle multidex out-of-the-box, we could have as many additional
methods as wewant. Ideally one would use the indirect-call strategy
only for those methods that use more than 254 registers to keep
the runtime overhead moderate.

4 EVALUATION

We aim to answer the following research questions:
RQ1: How many apps can be successfully instrumented?
RQ2: What is the overhead induced by the instrumentation?
RQ3: Is the reported coverage compliant with other tools?

4.1 Study Subjects

Our experiments are based on a sample of 1000 open source apps.
We leveraged the F-Droid XML index7 that lists the available apps
with metadata, e.g., version, min sdk version, etc., and randomly
selected 1000 apps as follows: We first analyzed which apps are
applicable on a x86 emulator image running API level 25 and do
not represent games according to the category metadata tag, since
MATE can only partially interact with screens of gaming apps. After
that we performed a random sampling strategy during which we
checked whether an app declares a launchable main activity in the
manifest, which is a requirement for Monkey [13]. To ensure that
the apps do not crash immediately, we then performed a sanity
check by running each app for roughly one minute using Monkey.
Apps that could not be installed or launched, or which crashed
within the first minute, were excluded and replaced by a new sample.
The resulting set of 1000 apps contains 306 multidex apps.

4.2 Instrumentation Tools & Environment

SinceWallMauer is a black-box coverage instrumentation tool, we
include ACVTool and COSMO as baselines in our empirical study.
Both tools have proven to yield high success rates [22, 24], and they
both report line coverage, allowing comparison with line coverage
reported by WallMauer. Note that ACVTool can only partially in-
strument multidex apps, i.e., it only instruments the very first DEX
file. We excluded tools that instrument at a different level of gran-
ularity, i.e., Ella [3], InsDal [20], CovDroid [28], the approach
proposed by Huang et al. [17] and the prototype implementation
given by Horváth et al. [15], since this would make the overhead

7https://f-droid.org/repo/index.xml

39

WallMauer: Robust Code Coverage Instrumentation

for Android Apps AST ’24, April 15–16, 2024, Lisbon, Portugal

comparison (RQ2) unfair. Moreover, certain tool implementations
are not publicly available, i.e., ABCA [18], while other tools like
Asc [25], Androcov [21] or DroidFax rely upon Jimple—an al-
ternative intermediate representation of Dalvik bytecode but less
accurate than Smali [10], thus making the coverage compliance
check non-trivial. On top of that, ACVTool has reported higher
success rates for all previously mentioned tools that are publicly
available. We do not consider white-box instrumentation tools in
our empirical study, since we assume that we do not have access to
the source code.

We used the latest available git commits for both ACVTool
(HEAD@ce8e39c) and COSMO (HEAD@228f27e) and adapted both
tools to use the latest available version of apktool (v2.9.0), since it
is also used by WallMauer and can decode and re-package almost
any APK in comparison to previous versions. In addition, we up-
dated COSMO to use the latest available version of dex2jar (v2.4),
which enhances COSMO with its support of multidex, and applied
the patches discovered in a public fork8 that integrated the missing
configuration and library files and fixed the signing and aligning
procedure after the instrumentation. With these improvements
COSMO has the same preconditions as WallMauer for the instru-
mentation process. We configured WallMauer to instrument in
lightweight mode at basic block level, which allows us to compare
the reported line coverage to ACVTool. We also include a variant
WallMauer* configured to instrument all classes within a DEX
file, rather than the default lightweight mode that instruments only
application classes, in order to have a fair comparison regarding
the overhead (RQ2).

The instrumentation of the apps (part of RQ1) as well as verifying
the compliance of the reported coverage (RQ4) was performed on
a local workstation equipped with an Intel(R) Core(TM) i7-2600
CPU (8 cores) with 3.40GHz and 16GB of RAM, and runs Debian
GNU/Linux 11 with Java 11. Experiments for checking the healthi-
ness of apps (RQ1) and assessing the overhead (RQ2) were conducted
on a compute cluster, where each node is equipped with two In-
tel Xeon E5-2620v4 CPUs (16 cores) with 2.10GHz and 256GB of
RAM, and runs Debian GNU/Linux 11 with Java 11. We limit each
execution to four cores and 60GB of RAM, where the emulator
(Nexus 5) runs a x86 image with API level 25 (Android 7.1.1) and is
limited to 4GB of RAM with a VM heap size of 576MB. We make
the implementation including the study subjects publicly avail-
able at https://figshare.com/articles/dataset/replication-package-
instrumentation-study_zip/24438475.

4.3 Experimental Procedure

RQ1. In order to answer RQ1 we instrumented the 1000 F-Droid
apps using ACVTool, COSMO, Wallmauer and Wallmauer*, re-
spectively. Any successfully generated instrumented APKs were
explored with Monkey for roughly one minute. We consider an app
to be successfully instrumented, i.e., healthy, if a trace or coverage
file can be fetched from the emulator after the exploration and the
respective coverage report can be generated.

RQ2. We measure the overhead induced by the instrumentation
on the set of healthy apps, i.e., the set of 525 apps that could be

8https://github.com/ggiraldez/COSMO – HEAD@c8af5a3

successfully instrumented by all tools (RQ1), as follows: First, we
compare the size of the DEX files before and after the instrumenta-
tion. This comparisonwas also performed in theACVTool study [22].
Second, we also compare the instrumentation time overhead of ev-
ery tool. Lastly, we want to quantify the runtime overhead. We
originally thought that we could leverage Monkey using the same
seed like was done in the ACVTool study [22], but after performing
some preliminary experiments we noticed that specifying the same
seed value does not guarantee that actually the same sequence of
events is executed. This happens because Monkey can generate too
many events in the fraction of a second for the Android emulator
such that only an undefined number of events is actually received
and executed. One could specify a large enough timeout between
two events, but this in turn may compensate the overhead induced
by the instrumentation. We tried the PassMark benchmark app
also used in the ACVTool study [22], but there observed strange
behaviour where the instrumented app performed better than the
original app when instrumented withWallMauer orWallMauer*.

Thus, we decided to craft our own script that can automati-
cally generate event sequences with a minimum length. The script
launches the AUT and then randomly induces either a tap, swipe,
text or key (e.g., volume up) event. This process is repeated until
the specified length is reached. If any event causes a crash or the
AUT is left, the app is reset and the process starts from the begin-
ning. This ensures that only the AUT is explored without the need
to restart the app in between. Once such a sequence is found the
script outputs them in the form of adb shell input commands such
that they can be easily replayed later on. In fact, our script is a
simplified version of Monkey that operates at a speed such that all
the events get definitely executed. It may take several iterations to
produce such a sequence but it reduces disruptive factors that may
compensate the runtime overhead, e.g., the time to check whether
an event left the AUT and a restart in such scenario, to a minimum,
since the produced event sequence is guaranteed to only explore
the AUT without the need for intermediate restarts. We configured
the script to produce a sequence of 60 events and this sequence was
applied 10 times on both the plain and the instrumented app to mit-
igate disturbing effects caused through random load. We recorded
the average execution time per app and computed thereout the
percental runtime overhead.

In addition to each percental or absolute overhead we statistically
compare each pair of tools using a Wilcoxon-Mann-Whitney U
test at 𝛼 = 0.05, and the Vargha-Delaney 𝐴12 effect size [27]. An
effect size 𝐴12 < 0.5 between two tools implies that the first tool
achieves lower values of the considered metric, while for an effect
size 𝐴12 > 0.5 the reverse holds.

RQ3. Since the ACVTool study [22] has shown that ACVTool is
compliant with other state-of-the-art code coverage tools for An-
droid and in particular compliant with JaCoCo, which is leveraged
by COSMO under the hood, it is sufficient that we compare the
reported coverage by WallMauer* to the reported coverage by
ACVTool. Moreover, both tools report coverage based on Dalvik
bytecode, simplifying the comparison. We took the 638 apps that
could be successfully instrumented by both ACVTool and Wall-
Mauer* and explored them using Monkey with a deterministic
sequence (same seed) of 1000 events. To ensure that Monkey is

40

https://figshare.com/articles/dataset/replication-package-instrumentation-study_zip/24438475
https://figshare.com/articles/dataset/replication-package-instrumentation-study_zip/24438475

AST ’24, April 15–16, 2024, Lisbon, Portugal Auer et al.

not sending too many events within a second (recall that this can
lead to dropping events) we specified a delay of 300ms between
two events. We repeated this execution three times per app and
tool and recorded the average coverage. In addition, we randomly
selected 10 apps and performed manual testing, i.e., we applied for
each app the same sequence of events with both instrumented ver-
sions and compared the reported coverage. This should ensure that
non-observable coverage differences during the former experiment
are not caused by the dynamic nature of certain apps.

4.4 Threats to Validity

Threats to external validity may arise from our sample of apps, and
results may not generalize beyond the tested apps. To counteract
selection bias, we picked 1000 apps for the evaluation randomly, but
apps on F-Droid may be different from those on Google PlayStore.
For consistency we used one specific emulator configuration and
one concrete API level, but results may differ on other versions.

Threats to internal validity may arise from bugs in our instru-
mentation tool or our analysis scripts. To mitigate this risk, we
manually reviewed the results, and tested and reviewed all code.
To reduce the risk of favoring one instrumentation tool over the
other, we equipped all tools with the same external dependencies,
e.g., the same build tools for signing and aligning APKs and the
same version of apktool. The patches we applied to the COSMO
implementation have been carefully reviewed. Lastly, to allow for a
fair comparison of the overhead and the reported coverage values,
we instrumented the same classes in each APK.

Threats to construct validitymay result from our choice of metrics,
in particular for overhead. However, we relied upon metrics also
applied by other researchers.

4.5 RQ1 Results

Figure 2 summarizes for how many apps an instrumented APK was
produced, and how many apps remained healthy after the instru-
mentation. ACVTool produced an instrumented APK in 885 out of
1000 cases, of which 638 remained healthy, while COSMO produced
891 instrumented APKs, of which 793 remained healthy. In contrast,
both WallMauer variants instrumented all but one app, and 998
remained healthy with WallMauer and 996 with WallMauer*.
This clearly demonstrates the robustness of our approach.

To better understand the reasons why instrumentation failed in
some cases, we studied the logs produced by each tool and Monkey.
ACVTool failed to produce an instrumented APK in 115 cases. Of
these, 64 cases can be directly attributed to themultidex problem. In
49 cases the Dalvik bytecode was corrupted either due to an invalid
register assignment or a jump label address out of the eligible
range. The remaining two failures are caused by apktool when re-
assembling the APK. One of those two affects all tools, while one
failure is specific to ACVTool. We believe that this issue is caused
by ACVTool invoking apktool with the aapt2 binary provided from
the Android SDK and not the bundled one from apktool, which
comes with a few patches.

In total, 247 apps (885–638) did not remain healthy after instru-
mentation with ACVTool. In 162 cases the crash originated from
the code that was injected by the tool. In 29 cases no coverage
file was generated, which in four cases could be directly attributed

ACVTool COSMO WallMauer WallMauer*
Tools

0

200

400

600

800

1000

885

638

891

793

999
998

999
996

Number of instrumentable & healthy apps

Instrumentable
Healthy
Not-Instrumentable

Figure 2: Number of instrumentable and healthy apps for

ACVTool, COSMO, WallMauer and WallMauer*.

to the application not responding, while in two cases there were
corrupted coverage files. In the remaining 54 cases the app was
not installable anymore, due to a fault in the aligning procedure.
In particular, the zipalign binary was missing a special flag9 that
is required with more recent API levels. Since ACVTool only in-
struments the first DEX file in an APK, a subset of the apps is
only partially instrumented. Of the 306 multidex apps ACVTool
managed to partially instrument only 139 apps successfully.

COSMO failed to produce an instrumented APK in 109 cases,
of which 102 can be attributed to a failure in the Java to Dalvik
bytecode conversion. Although dex2jar produced a JAR file, it is
likely that something was corrupted during this process, which
then broke the re-conversion. Two failures appeared during the
offline instrumentation using JaCoCo and one failure is due to the
apktool building issue previously mentioned. In total, 98 apps (891–
793) did not remain healthy after instrumentation with COSMO. In
all of these cases no coverage file was produced. In 67 of these cases
the problem can be attributed to the application not responding.

Both WallMauer variants failed to produce an instrumented
APK in only one case, which is due to the apktool issue affecting
all tools. The one app (999–998) as well as the three apps (999–
996) that did not remain healthy after the instrumentation with
WallMauer and WallMauer*, respectively, exhibit the same fault:
The instrumentation caused too much load on the main thread
of the apps and thus those apps got stuck upon launching, and
consequently no traces file were produced. We verified that the one
app (WallMauer) and the three apps (WallMauer*) can actually be
instrumented and are not stuck due to any anti-tampering technique
employed by the apps by only instrumenting the main activity,
which allowed the app to be launched and explored by Monkey
successfully. This undermines that the actual instrumentation is not
causing any verification errors in the produced Dalvik bytecode,
which is often a primary reason why other tools fail.

9https://stackoverflow.com/questions/55173004/targeting-sdk-android-q-results-in-
failed-to-finalize-session-install-failed-i

41

WallMauer: Robust Code Coverage Instrumentation

for Android Apps AST ’24, April 15–16, 2024, Lisbon, Portugal

We will inform the tool authors of ACVTool and COSMO with
our insights and provide patches where applicable.

Summary (RQ1): WallMauer instrumented 998 out of 1000
F-Droid apps successfully, which demonstrates its improved ro-
bustness compared to the state-of-the-art tools COSMO (793) and
ACVTool (638).

4.6 RQ2 Results

4.6.1 Instrumentation Time. There are 525 apps that were success-
fully instrumented by all tools. The instrumentation time overhead
on these apps is shown in Fig. 3. On average, it takes 71 seconds to
instrument an app using ACVTool, while COSMO accomplishes
the same task in 35 seconds. In contrast, WallMauer requires 21
seconds and WallMauer* 99 seconds. There is a significant differ-
ence between WallMauer and ACVTool (𝑝 < 0.001, 𝐴12 = 0.11)
in favor of WallMauer, and between WallMauer and COSMO
(𝑝 < 0.001, 𝐴12 = 0.24).

Note that the instrumentation time for ACVTool were higher if
it would instrument all DEX files in multidex APKs, rather than just
the first one. Out of the 525 apps instrumented by all tools there
are exactly 100 multidex apps (19.05%); on these apps ACVTool is
likely to produce incomplete coverage reports as a consequence of
the incomplete instrumentation.

COSMO is extremely fast in comparison to WallMauer* and
ACVTool. We believe that this can be attributed to the fact that
COSMO can perform some operations directly in place and that
it does not need to generate any additional files for the coverage
computation unlike the other tools.

The large performance difference between WallMauer and
WallMauer* is exacerbated by the large number of multidex apps.
Nevertheless, we were a bit surprised that WallMauer* performs
rather slow although it instruments all classes and methods in a
parallel manner. We identified as root cause that the synchronized
writes to the blocks.txt are hampering the performance as well as
the rather slow read and write operations induced by the under-
lying multidexlib2 library. Furthermore, we need to perform some
static analysis like the identification of the leader instructions to
form the basic blocks or the register type inference algorithm that
requires some computation time.

Overall, we nevertheless believe that the current instrumenta-
tion time overhead of WallMauer* is tolerable for instrumenting
all classes, but for most practical purposes the lightweight instru-
mentation provided by WallMauer is sufficient, and very fast.

4.6.2 Size. Another common metric to quantify the instrumen-
tation overhead is to measure the percental size increase of the
DEX files [22]. This information is represented in Fig. 4. ACVTool
imposes a size overhead of 177% on average, while COSMO causes
an average increase of 125% (with a median of 41%, but a few ex-
treme outliers). In contrast, WallMauer induces a small overhead
of 35%, while WallMauer* triples the size (313%). There is a statis-
tically significant difference between WallMauer and ACVTool
(𝑝 < 0.001) in favor of WallMauer (𝐴12 = 0.02), while the same
holds between WallMauer and COSMO (𝑝 < 0.001, 𝐴12 = 0.22).

We can only speculate why COSMO imposes 52% less overhead
compared to ACVTool although they use the same representation.

ACVTool COSMO WallMauer WallMauer*
0

50

100

150

Se
co

nd
s

Instrumentation times

Figure 3: Instrumentation time distributions.

ACVTool COSMO WallMauer WallMauer*
0

100

200

300

400

Pe
rc

en
ta

ge

DEX size overhead

Figure 4: Percental DEX size increase.

ACVTool COSMO WallMauer WallMauer*
0

5

10

15

Pe
rc

en
ta

ge

Runtime overhead

Figure 5: Percental runtime overhead.

One reason might be that during the conversion from Dalvik to
Java bytecode or vice versa some optimizations may take place.

The larger overhead of WallMauer* can be attributed to the
fact that we use a verbose string to uniquely identify different basic
blocks, while ACVTool and COSMO rely upon a compact represen-
tation of Boolean vectors. However, the size overhead caused by the
strings does not constitute a problem as long as the instrumented
apps remain operational and do not exhibit a significant runtime
overhead. In RQ1 (Section 4.5) we observed that three apps were
affected by too much load imposed through the instrumentation of
WallMauer* and thus were unresponsive, while ACVTool (four
cases) and COSMO (67 cases) performed worse in this regard. By be-
ing selective about instrumentation, WallMauer results in smaller
DEX files despite the use of string constants.

4.6.3 Runtime. Of particular interest in terms of overhead are
effects on the runtime. For this analysis we had to exclude 27 apps
in total because our script could not produce a sequence consisting

42

AST ’24, April 15–16, 2024, Lisbon, Portugal Auer et al.

of 60 inputs without leaving the AUT in a reasonable amount of
time. This primarily happens because certain apps directly open
some system app after the startup. The crafted test, however, intends
to measure the overhead exclusively on the AUT.

Figure 5 shows the percental runtime overhead on a set of 498
apps (525 - 27). ACVTool imposes an average runtime overhead of
4.72%, while COSMO induces four times less overhead with 1.09%.
WallMauer exhibits the lowest runtime overhead with 0.85% on
average and WallMauer* comes with an average overhead of
4.23%. We argue that such overheads are tolerable for a fine-grained
coverage instrumentation. There is a significant difference between
WallMauer and ACVTool (𝑝 = 0.04) with a negligible effect size
(𝐴12 = 0.47) in favor of WallMauer, while between WallMauer
and COSMO there is no significant difference (𝑝 = 0.32).

Summary (RQ2): WallMauer improves over ACVTool and
COSMO with an average of 21 seconds to instrument an app,
increasing the DEX size by 35%, and a runtime overhead of 0.85%.

4.7 RQ3 Results

Figure 6 shows the coverage box plots for both ACVTool and
WallMauer* on a set of 633 apps. We had to exclude five apps from
the original set of 638 apps successfully instrumented by ACVTool
because it failed to reliably retrieve the coverage in those cases.
One can hardly observe any visible differences in Fig. 6, and a
high 𝑝-value of 0.76 reinforce the absence of significant differences;
ACVTool achieves a mean coverage of 12.97% while WallMauer*
reaches 13.18% on average. Moreover, in only 18 cases there was a
tool-wise difference greater than 5%, which is primarily due to the
fact that ACVTool does instrument only the first DEX file, while
in 461 cases the deviation was less than 1%. A similar observation
can be made by inspecting Table 1 which shows the line coverage
reported by ACVTool and WallMauer* on the 10 selected apps,
based on manual testing to ensure identical execution sequences.
Overall, Table 1 shows large compliance betweenWallMauer* and
ACVTool, and thus confirms that the approach implemented in
WallMauer* provides accurate coverage values.

There consistently are minor discrepancies of less than 1% per
app. These are caused by ACVTool considering certain instruction
as untraceable, in particular control-flow changing instructions like
return, goto and throw, whereas WallMauer* succeeds in tracing
these instructions as well. We also observed that invoke instructions
that are paired with move-result instructions are also not traced
by ACVTool. This is a direct limitation of the instruction-based
instrumentation; recall that it is not allowed to place a probe be-
tween such a pair (cf. Section 2.5). Lastly, no probes can be placed
between a catch label and the move-exception instruction. In con-
trast, WallMauer* can track all of these instructions by placing
the probe at the beginning of a basic block. The only exception
applies to the latter restriction, here we place our probe directly
after the move-exception instruction.

Summary (RQ3): The reported coverage between ACVTool and
WallMauer* is widely compliant, except for minor discrepancies
caused by limitations of ACVTool.

ACVTool WallMauer*
0

10

20

30

Lin
e

Co
ve

ra
ge

Coverage compliance

Figure 6: Coverage compliance between ACVTool andWall-

Mauer*.

Table 1: Line coverage compliance check.

Total line coverage on the selected 10 apps.

App Line Coverage Deviation

ACVTool WallMauer*

at.linuxtage.companion 18.12% 18.59% 0.47%
br.com.colman.nato 36.75% 37.63% 0.88%
org.bibledit.android 3.59% 3.66% 0.07%
org.yaaic 0.77% 0.78% 0.01%
taco.scoop 16.11% 16.64% 0.53%
uk.co.yahoo.p1rpp.calendartrigger 2.03% 2.31% 0.28%
x1125io.initdlight 7.02% 6.87% 0.15%
org.michaelevans.nightmodeenabler 5.26% 5.42% 0.16%
net.ibbaa.keepitup 12.17% 12.46% 0.29%
eu.faircode.netguard 24.64% 25.23% 0.59%

5 CONCLUSIONS

In this paper we proposed a refined approach to measure code
coverage in Android apps, and its implementation in the Wall-
Mauer tool. WallMauer requires solely the APK file as input and
thus can be relatively simply integrated into any Android testing
frameworks. In contrast to most state-of-the-art tools like ACV-
Tool it can handle multidex out-of-the-box and strictly adheres to
the Dalvik bytecode specification, making it very robust against
verification errors. Empirical results on a set of 1000 F-Droid apps
demonstrated that WallMauer is extremely robust, successfully
instrumenting 99% of the apps.

There nevertheless are possibilities for future improvement. The
current code coverage report is textual but we would like to provide
a graphical report, to better support human testers. Another aspect
is the limitation that methods using more than 254 registers cannot
be instrumented so far. As already indicated, this limitation can be
circumvented using the indirect-call approach. We believe that we
can further reduce the size and runtime overhead by using a more
compact representation for the basic blocks, e.g., a Boolean array.

WallMauer is available as open source, and we provide a replica-
tion package that contains all case studies, the tool implementation,
and the raw results of our study at: https://figshare.com/articles/
dataset/replication-package-instrumentation-study_zip/24438475.

ACKNOWLEDGMENTS

This work is supported by DFG project FR2955/4-1 “STUNT: Im-
proving Software Testing Using Novelty”.

43

https://figshare.com/articles/dataset/replication-package-instrumentation-study_zip/24438475
https://figshare.com/articles/dataset/replication-package-instrumentation-study_zip/24438475

WallMauer: Robust Code Coverage Instrumentation

for Android Apps AST ’24, April 15–16, 2024, Lisbon, Portugal

REFERENCES

[1] [n. d.]. App components. https://developer.android.com/guide/components/
fundamentals#Components. Accessed: 2023-10-10.

[2] [n. d.]. Dalvik bytecode. https://source.android.com/docs/core/runtime/dalvik-
bytecode. Accessed: 2023-10-10.

[3] [n. d.]. ELLA: A Tool for Binary Instrumentation of Android Apps. https://github.
com/saswatanand/ella. Accessed: 2023-10-10.

[4] [n. d.]. EMMA: a free Java code coverage tool. https://emma.sourceforge.net/.
Accessed: 2023-10-10.

[5] [n. d.]. Enable multidex for apps with over 64K methods. https://developer.
android.com/build/multidex. Accessed: 2023-10-10.

[6] [n. d.]. IntelliJ IDEA code coverage runner. https://www.jetbrains.com/help/idea/
2017.1/code-coverage.html. Accessed: 2023-10-10.

[7] [n. d.]. JaCoCo Java Code Coverage Library. https://www.eclemma.org/jacoco/.
Accessed: 2023-10-10.

[8] [n. d.]. Understand the APK structure. https://developer.android.com/topic/
performance/reduce-apk-size#apk-structure. Accessed: 2023-10-10.

[9] Domenico Amalfitano, Nicola Amatucci, Anna Fasolino, and Porfirio Tramon-
tana. 2015. AGRippin: A Novel Search Based Testing Technique for Android
Applications. 5–12. https://doi.org/10.1145/2804345.2804348

[10] Yauhen Leanidavich Arnatovich, Hee Beng Kuan Tan, Sun Ding, Kaiping Liu, and
Lwin Khin Shar. 2014. Empirical Comparison of Intermediate Representations
for Android Applications. In International Conference on Software Engineering
and Knowledge Engineering. https://api.semanticscholar.org/CorpusID:16483716

[11] Michael Auer, Felix Adler, and Gordon Fraser. 2022. Improving Search-Based
Android Test Generation Using Surrogate Models. In Search-Based Software Engi-
neering, Mike Papadakis and Silvia Regina Vergilio (Eds.). Springer International
Publishing, Cham, 51–66.

[12] Michael Auer, Andreas Stahlbauer, and Gordon Fraser. 2023. Android Fuzzing:
Balancing User-Inputs and Intents. In 2023 IEEE Conference on Software Testing,
Verification and Validation (ICST). 37–48. https://doi.org/10.1109/ICST57152.2023.
00013

[13] Android Developers Docs. [n. d.]. UI/Application Exerciser Monkey. https:
//developer.android.com/studio/test/monkey. Accessed: 2023-10-10.

[14] Marcelo Medeiros Eler, José Miguel Rojas, Yan Ge, and Gordon Fraser. 2018.
Automated Accessibility Testing of Mobile Apps. In ICST. IEEE, 116–126.

[15] Ferenc Horváth, Szabolcs Bognár, Tamás Gergely, Róbert Rácz, Árpad Beszédes,
and Vladimir Marinkovic. 2014. Code Coverage Measurement Framework for
Android Devices. Acta Cybern. 21, 3 (aug 2014), 439–458. https://doi.org/10.
14232/actacyb.21.3.2014.10

[16] Ferenc Horváth, Tamás Gergely, Árpád Beszédes, Dávid Tengeri, Gergo? Balogh,
and Tibor Gyimóthy. 2019. Code Coverage Differences of Java Bytecode and
Source Code Instrumentation Tools. Software Quality Journal 27, 1 (mar 2019),
79–123. https://doi.org/10.1007/s11219-017-9389-z

[17] Chun-Ying Huang, Ching-Hsiang Chiu, Chih-Hung Lin, and Han-Wei Tzeng.
2015. Code Coverage Measurement for Android Dynamic Analysis Tools. In 2015
IEEE International Conference on Mobile Services. 209–216. https://doi.org/10.

1109/MobServ.2015.38
[18] Shang-Yi Huang, Chia-Hao Yeh, FarnWang, and Chung-Hao Huang. 2015. ABCA:

Android Black-box Coverage Analyzer of mobile app without source code. In
2015 IEEE International Conference on Progress in Informatics and Computing (PIC).
399–403. https://doi.org/10.1109/PIC.2015.7489877

[19] Christian Häubl, Christian Wimmer, and Hanspeter Mössenböck. 2013. Deriving
code coverage information from profiling data recorded for a trace-based just-
in-time compiler. ACM International Conference Proceeding Series, 1–12. https:
//doi.org/10.1145/2500828.2500829

[20] Jierui Liu, Tianyong Wu, Xi Deng, Jun Yan, and Jian Zhang. 2017. InsDal: A safe
and extensible instrumentation tool on Dalvik byte-code for Android applications.
502–506. https://doi.org/10.1109/SANER.2017.7884662

[21] Nataniel P. Borges, Maria Gómez, and Andreas Zeller. 2018. Guiding App Testing
with Mined Interaction Models. In 2018 IEEE/ACM 5th International Conference
on Mobile Software Engineering and Systems (MOBILESoft). 133–143.

[22] Aleksandr Pilgun, Olga Gadyatskaya, Yury Zhauniarovich, Stanislav Dashevskyi,
Artsiom Kushniarou, and Sjouke Mauw. 2020. Fine-Grained Code Coverage
Measurement in Automated Black-Box Android Testing. ACM Trans. Softw. Eng.
Methodol. 29, 4, Article 23 (jul 2020), 35 pages. https://doi.org/10.1145/3395042

[23] Anshuman Rohella and Shingo Takada. 2018. Testing Android Applications
Using Multi-Objective Evolutionary Algorithms with a Stopping Criteria. 308–
353. https://doi.org/10.18293/SEKE2018-084

[24] Andrea Romdhana, Mariano Ceccato, Gabriel Claudiu Georgiu, Alessio Merlo,
and Paolo Tonella. 2021. COSMO: Code Coverage Made Easier for Android. In
2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST).
417–423. https://doi.org/10.1109/ICST49551.2021.00053

[25] Wei Song, Xiangxing Qian, and Jeff Huang. 2017. EHBDroid: Beyond GUI testing
for Android applications. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). 27–37. https://doi.org/10.1109/ASE.2017.
8115615

[26] Dávid Tengeri, Ferenc Horváth, Árpád Beszédes, Tamás Gergely, and Tibor
Gyimóthy. 2016. Negative Effects of Bytecode Instrumentation on Java Source
Code Coverage. In 2016 IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Vol. 1. 225–235. https://doi.org/10.1109/
SANER.2016.61

[27] András Vargha and Harold D Delaney. 2000. A critique and improvement of
the CL common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[28] Chao-Chun Yeh and Shih-Kun Huang. 2015. CovDroid: A Black-Box Testing
Coverage System for Android. In 2015 IEEE 39th Annual Computer Software and
Applications Conference, Vol. 3. 447–452. https://doi.org/10.1109/COMPSAC.2015.
125

[29] Zhichao Zhou, Yuming Zhou, Chunrong Fang, Zhenyu Chen, and Yutian Tang.
2023. Selectively Combining Multiple Coverage Goals in Search-Based Unit
Test Generation. In Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering (Rochester, MI, USA) (ASE ’22). Association
for Computing Machinery, New York, NY, USA, Article 91, 12 pages. https:
//doi.org/10.1145/3551349.3556902

44

https://developer.android.com/guide/components/fundamentals#Components
https://developer.android.com/guide/components/fundamentals#Components
https://source.android.com/docs/core/runtime/dalvik-bytecode
https://source.android.com/docs/core/runtime/dalvik-bytecode
https://github.com/saswatanand/ella
https://github.com/saswatanand/ella
https://emma.sourceforge.net/
https://developer.android.com/build/multidex
https://developer.android.com/build/multidex
https://www.jetbrains.com/help/idea/2017.1/code-coverage.html
https://www.jetbrains.com/help/idea/2017.1/code-coverage.html
https://www.eclemma.org/jacoco/
https://developer.android.com/topic/performance/reduce-apk-size#apk-structure
https://developer.android.com/topic/performance/reduce-apk-size#apk-structure
https://doi.org/10.1145/2804345.2804348
https://api.semanticscholar.org/CorpusID:16483716
https://doi.org/10.1109/ICST57152.2023.00013
https://doi.org/10.1109/ICST57152.2023.00013
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
https://doi.org/10.14232/actacyb.21.3.2014.10
https://doi.org/10.14232/actacyb.21.3.2014.10
https://doi.org/10.1007/s11219-017-9389-z
https://doi.org/10.1109/MobServ.2015.38
https://doi.org/10.1109/MobServ.2015.38
https://doi.org/10.1109/PIC.2015.7489877
https://doi.org/10.1145/2500828.2500829
https://doi.org/10.1145/2500828.2500829
https://doi.org/10.1109/SANER.2017.7884662
https://doi.org/10.1145/3395042
https://doi.org/10.18293/SEKE2018-084
https://doi.org/10.1109/ICST49551.2021.00053
https://doi.org/10.1109/ASE.2017.8115615
https://doi.org/10.1109/ASE.2017.8115615
https://doi.org/10.1109/SANER.2016.61
https://doi.org/10.1109/SANER.2016.61
https://doi.org/10.1109/COMPSAC.2015.125
https://doi.org/10.1109/COMPSAC.2015.125
https://doi.org/10.1145/3551349.3556902
https://doi.org/10.1145/3551349.3556902

